In the sub-Riemannian Heisenberg group equipped with its Carnot-Caratheodory metric and with a Haar measure, we consider isodiametric sets, i.e. sets maximizing the measure among all sets with a given diameter.In particular, given an isodiametric set, and up to negligible sets, we prove that its boundary is given by the graphs of two locally Lipschitz functions.Moreover, in the restricted class of rotationally invariant sets, we give a quite complete characterization of any compact (rotationally invariant) isodiametric set. More specifically, its Steiner symmetrization with respect to the Cn-planeis shown to coincide with the Euclidean convex hull of a CC-ball. At the same time, we also prove quite unexpected non-uniqueness results.
Isodiametric sets in the Heisenberg group / Leonardi, Gian Paolo; Rigot, Severine; Vittone, Davide. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 28:4(2012), pp. 999-1024. [10.4171/rmi/700]
Isodiametric sets in the Heisenberg group
LEONARDI, Gian Paolo;
2012
Abstract
In the sub-Riemannian Heisenberg group equipped with its Carnot-Caratheodory metric and with a Haar measure, we consider isodiametric sets, i.e. sets maximizing the measure among all sets with a given diameter.In particular, given an isodiametric set, and up to negligible sets, we prove that its boundary is given by the graphs of two locally Lipschitz functions.Moreover, in the restricted class of rotationally invariant sets, we give a quite complete characterization of any compact (rotationally invariant) isodiametric set. More specifically, its Steiner symmetrization with respect to the Cn-planeis shown to coincide with the Euclidean convex hull of a CC-ball. At the same time, we also prove quite unexpected non-uniqueness results.File | Dimensione | Formato | |
---|---|---|---|
RigLeoVit_RMI2012.pdf
Accesso riservato
Descrizione: Articolo pubblicato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
415.69 kB
Formato
Adobe PDF
|
415.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris