Schema matching is the problem of finding relationships among concepts across heterogeneous data sources (heterogeneous in format and in structure). Starting from the “hidden meaning” associated to schema labels (i.e. class/attribute names) it is possible to discover relationships among the elements of different schemata. Lexical annotation (i.e. annotation w.r.t. a thesaurus/lexical resource) helps in associating a “meaning” to schema labels. However, accuracy of semi-automatic lexical annotation methods on real-world schemata suffers from the abundance of non-dictionary words such as compound nouns and word abbreviations. In this work, we address this problem by proposing a method to perform schema labels normalization which increases the number of comparable labels. Unlike other solutions, the method semi-automatically expands abbreviations and annotates compound terms, without a minimal manual effort. We empirically prove that our normalization method helps in the identification of similarities among schema elements of different data sources, thus improving schema matching accuracy.

Automatic Normalization and Annotation for Discovering Semantic Mappings / Bergamaschi, Sonia; Beneventano, Domenico; Po, Laura; Sorrentino, Serena. - STAMPA. - 6585:(2011), pp. 85-100. (Intervento presentato al convegno Workshop on Search Computing - Trends and Developments, SeCo 2010 tenutosi a Como, Italy nel May 25-31, 2010) [10.1007/978-3-642-19668-3_8].

Automatic Normalization and Annotation for Discovering Semantic Mappings

BERGAMASCHI, Sonia;BENEVENTANO, Domenico;PO, Laura;SORRENTINO, Serena
2011

Abstract

Schema matching is the problem of finding relationships among concepts across heterogeneous data sources (heterogeneous in format and in structure). Starting from the “hidden meaning” associated to schema labels (i.e. class/attribute names) it is possible to discover relationships among the elements of different schemata. Lexical annotation (i.e. annotation w.r.t. a thesaurus/lexical resource) helps in associating a “meaning” to schema labels. However, accuracy of semi-automatic lexical annotation methods on real-world schemata suffers from the abundance of non-dictionary words such as compound nouns and word abbreviations. In this work, we address this problem by proposing a method to perform schema labels normalization which increases the number of comparable labels. Unlike other solutions, the method semi-automatically expands abbreviations and annotates compound terms, without a minimal manual effort. We empirically prove that our normalization method helps in the identification of similarities among schema elements of different data sources, thus improving schema matching accuracy.
2011
Workshop on Search Computing - Trends and Developments, SeCo 2010
Como, Italy
May 25-31, 2010
6585
85
100
Bergamaschi, Sonia; Beneventano, Domenico; Po, Laura; Sorrentino, Serena
Automatic Normalization and Annotation for Discovering Semantic Mappings / Bergamaschi, Sonia; Beneventano, Domenico; Po, Laura; Sorrentino, Serena. - STAMPA. - 6585:(2011), pp. 85-100. (Intervento presentato al convegno Workshop on Search Computing - Trends and Developments, SeCo 2010 tenutosi a Como, Italy nel May 25-31, 2010) [10.1007/978-3-642-19668-3_8].
File in questo prodotto:
File Dimensione Formato  
SECO_chapther_2010_POSTPRINT.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 366.63 kB
Formato Adobe PDF
366.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/649805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 5
social impact