Sex chromosome imbalance in males is linked to a supernumerary X chromosome, a condition resulting in Klinefelter syndrome (KS; 47, XXY). KS patients suffer from infertility, hypergonadotropic hypogonadism, and cognitive impairments. Mechanisms of KS pathophysiology are poorly understood and require further exploration using animal models. Therefore, we phenotypically characterized 41, XX(Y)* mice of different ages, evaluated observed germ cell loss, studied X-inactivation, and focused on the previously postulated impaired Leydig cell maturation and function as a possible cause of the underandrogenization seen in KS. Xist methylation analysis revealed normal X-chromosome inactivation similar to that seen in females. Germ cell loss was found to be complete and to occur during the peripubertal phase. Significantly elevated FSH and LH levels were persistent in 41, XX(Y)* mice of different ages. Although Leydig cell hyperplasia was prominent, isolated XX(Y)* Leydig cells showed a mature mRNA expression profile and a significantly higher transcriptional activity compared with controls. Stimulation of XX(Y)* Leydig cells in vitro by human chorionic gonadotropin indicated a mature LH receptor whose maximal response exceeded that of control Leydig cells. The hyperactivity of Leydig cells seen in XX(Y)* mice suggests that the changes in the endocrine milieu observed in KS is not due to impaired Leydig cell function. We suggest that the embedding of Leydig cells into the changed testicular environment in 41 XX(Y)* males as such influences their endocrine function.

Male 41, XXY* mice as a model for Klinefelter syndrome: Hyperactivation of Leydig cells / Wistuba, J; Luetjens, Cm; Stuckenborg, Jb; Poplinski, A; Werler, S; Dittmann, M; Damm, Os; Hamalainen, T; Simoni, Manuela; Gromoll, J.. - In: ENDOCRINOLOGY. - ISSN 0013-7227. - ELETTRONICO. - 151:6(2010), pp. 2898-2910. [10.1210/en.2009-1396]

Male 41, XXY* mice as a model for Klinefelter syndrome: Hyperactivation of Leydig cells

SIMONI, Manuela;
2010

Abstract

Sex chromosome imbalance in males is linked to a supernumerary X chromosome, a condition resulting in Klinefelter syndrome (KS; 47, XXY). KS patients suffer from infertility, hypergonadotropic hypogonadism, and cognitive impairments. Mechanisms of KS pathophysiology are poorly understood and require further exploration using animal models. Therefore, we phenotypically characterized 41, XX(Y)* mice of different ages, evaluated observed germ cell loss, studied X-inactivation, and focused on the previously postulated impaired Leydig cell maturation and function as a possible cause of the underandrogenization seen in KS. Xist methylation analysis revealed normal X-chromosome inactivation similar to that seen in females. Germ cell loss was found to be complete and to occur during the peripubertal phase. Significantly elevated FSH and LH levels were persistent in 41, XX(Y)* mice of different ages. Although Leydig cell hyperplasia was prominent, isolated XX(Y)* Leydig cells showed a mature mRNA expression profile and a significantly higher transcriptional activity compared with controls. Stimulation of XX(Y)* Leydig cells in vitro by human chorionic gonadotropin indicated a mature LH receptor whose maximal response exceeded that of control Leydig cells. The hyperactivity of Leydig cells seen in XX(Y)* mice suggests that the changes in the endocrine milieu observed in KS is not due to impaired Leydig cell function. We suggest that the embedding of Leydig cells into the changed testicular environment in 41 XX(Y)* males as such influences their endocrine function.
2010
151
6
2898
2910
Male 41, XXY* mice as a model for Klinefelter syndrome: Hyperactivation of Leydig cells / Wistuba, J; Luetjens, Cm; Stuckenborg, Jb; Poplinski, A; Werler, S; Dittmann, M; Damm, Os; Hamalainen, T; Simoni, Manuela; Gromoll, J.. - In: ENDOCRINOLOGY. - ISSN 0013-7227. - ELETTRONICO. - 151:6(2010), pp. 2898-2910. [10.1210/en.2009-1396]
Wistuba, J; Luetjens, Cm; Stuckenborg, Jb; Poplinski, A; Werler, S; Dittmann, M; Damm, Os; Hamalainen, T; Simoni, Manuela; Gromoll, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/649338
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact