An exact computation of the persistent Betti numbers of a submanifold X of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of X is available. We show that, under suitable density conditions, it is possible to estimate the multidimensional persistent Betti numbers of X from the ones of a union of balls centered on the sample points;this even yields the exact value in restricted areas of the domain.Similar inequalities are proved for the multidimensional persistent Betti numbers of the ball union and the one of a combinatorial description of it.

N., Cavazza, Ferri, M. e Claudia, Landi. "Estimating multidimensional persistent homology through a finite sampling" Working paper, AMS Acta, Università di Bologna, 2010.

Estimating multidimensional persistent homology through a finite sampling

LANDI, Claudia
2010

Abstract

An exact computation of the persistent Betti numbers of a submanifold X of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of X is available. We show that, under suitable density conditions, it is possible to estimate the multidimensional persistent Betti numbers of X from the ones of a union of balls centered on the sample points;this even yields the exact value in restricted areas of the domain.Similar inequalities are proved for the multidimensional persistent Betti numbers of the ball union and the one of a combinatorial description of it.
2010
Dicembre
N., Cavazza; M., Ferri; Landi, Claudia
N., Cavazza, Ferri, M. e Claudia, Landi. "Estimating multidimensional persistent homology through a finite sampling" Working paper, AMS Acta, Università di Bologna, 2010.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/648493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact