We start by studying the existence of positive solutions (on the positive half-line) for the differential equation u''(x)=a(x)u-g(u), under the condition u'(0)=0, and that u vanishes at infinity. The coefficient a(x) is positive, g satisfies suitable growth hypotheses or, in alternative, is bounded. Then we deal with the analogous fourth order problem, where the left-hand side of the equation is replaced by -u''''+cu'' (c>0), g(u)/u is a power of |u|, and the further condition u'''(0)=0 is required.

Solutions of second-order and fourth-order ODE's on the half-line / R., Enguiça; Gavioli, Andrea; L., Sanchez. - In: NONLINEAR ANALYSIS. - ISSN 1751-570X. - STAMPA. - 73:9(2010), pp. 2968-2979. [10.1016/j.na.2010.06.062]

Solutions of second-order and fourth-order ODE's on the half-line

GAVIOLI, Andrea;
2010

Abstract

We start by studying the existence of positive solutions (on the positive half-line) for the differential equation u''(x)=a(x)u-g(u), under the condition u'(0)=0, and that u vanishes at infinity. The coefficient a(x) is positive, g satisfies suitable growth hypotheses or, in alternative, is bounded. Then we deal with the analogous fourth order problem, where the left-hand side of the equation is replaced by -u''''+cu'' (c>0), g(u)/u is a power of |u|, and the further condition u'''(0)=0 is required.
2010
73
9
2968
2979
Solutions of second-order and fourth-order ODE's on the half-line / R., Enguiça; Gavioli, Andrea; L., Sanchez. - In: NONLINEAR ANALYSIS. - ISSN 1751-570X. - STAMPA. - 73:9(2010), pp. 2968-2979. [10.1016/j.na.2010.06.062]
R., Enguiça; Gavioli, Andrea; L., Sanchez
File in questo prodotto:
File Dimensione Formato  
egs.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 408.48 kB
Formato Adobe PDF
408.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/645193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact