By means of a continuation argument, we prove the existence of at least one increasing heteroclinic solution to a scalar equation of the kind x''=a(t)V'(x), where V is a non-negative double well potential, and a(t) is a positive, measurable coefficient, which is definitively monotone with respect to |t|, converges to a positive limit l as |t| diverges and fulfils one of the two following assumptions: a(t) never goes below l, or a(t)-l converges to 0, as |t| diverges, more slowly than a suitable exponential term.

Heteroclinic solutions to asymptotically autonomous equations via continuation methods / Gavioli, Andrea. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - STAMPA. - 11-3:(2011), pp. 613-631.

Heteroclinic solutions to asymptotically autonomous equations via continuation methods

GAVIOLI, Andrea
2011

Abstract

By means of a continuation argument, we prove the existence of at least one increasing heteroclinic solution to a scalar equation of the kind x''=a(t)V'(x), where V is a non-negative double well potential, and a(t) is a positive, measurable coefficient, which is definitively monotone with respect to |t|, converges to a positive limit l as |t| diverges and fulfils one of the two following assumptions: a(t) never goes below l, or a(t)-l converges to 0, as |t| diverges, more slowly than a suitable exponential term.
11-3
613
631
Heteroclinic solutions to asymptotically autonomous equations via continuation methods / Gavioli, Andrea. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - STAMPA. - 11-3:(2011), pp. 613-631.
Gavioli, Andrea
File in questo prodotto:
File Dimensione Formato  
cmter.pdf

non disponibili

Descrizione: Testo dell'articolo
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 252.43 kB
Formato Adobe PDF
252.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/645189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact