By means of a continuation argument, we prove the existence of at least one increasing heteroclinic solution to a scalar equation of the kind x''=a(t)V'(x), where V is a non-negative double well potential, and a(t) is a positive, measurable coefficient, which is definitively monotone with respect to |t|, converges to a positive limit l as |t| diverges and fulfils one of the two following assumptions: a(t) never goes below l, or a(t)-l converges to 0, as |t| diverges, more slowly than a suitable exponential term.
Heteroclinic solutions to asymptotically autonomous equations via continuation methods / Gavioli, Andrea. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - STAMPA. - 11:3(2011), pp. 613-631. [10.1515/ans-2011-0307]
Heteroclinic solutions to asymptotically autonomous equations via continuation methods
GAVIOLI, Andrea
2011
Abstract
By means of a continuation argument, we prove the existence of at least one increasing heteroclinic solution to a scalar equation of the kind x''=a(t)V'(x), where V is a non-negative double well potential, and a(t) is a positive, measurable coefficient, which is definitively monotone with respect to |t|, converges to a positive limit l as |t| diverges and fulfils one of the two following assumptions: a(t) never goes below l, or a(t)-l converges to 0, as |t| diverges, more slowly than a suitable exponential term.File | Dimensione | Formato | |
---|---|---|---|
cmter.pdf
Accesso riservato
Descrizione: Testo dell'articolo
Tipologia:
Versione pubblicata dall'editore
Dimensione
252.43 kB
Formato
Adobe PDF
|
252.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris