Bioactive-glass-derived scaffolds are crucial in bone tissue engineering since they act as temporary templates for tissue regrowth, providing structural support to the cells in a resulting 3D architecture. However, many issues remain open with regard to their design. On the one hand, bioceramic scaffolds should be bioactive, highly porous and should possess adequate mechanical properties; on the other hand, attempts to improve the mechanical properties of the widely used 45S5 Bioglass ® turn the bioactive glass itself into a glass-ceramic, with non-trivial effects on the resulting scaffold bioactivity. In this work, for the first time a new bioactive glass composition was employed to produce scaffolds for bone tissue engineering. The new glass composition can be treated at a relatively low temperature and it is characterized by a reduced tendency to crystallize compared to the 45S5 Bioglass ®. Moreover, the presented scaffolds are realized with a recently developed technique described here in detail. The resulting samples are highly porous and bioactive. Additionally, they possess a resistant and at the same time permeable surface similar to a shell, which ensures good manageability.
A new bioactive glass composition for bioceramic scaffolds / Bellucci, Devis; Cannillo, Valeria; Sola, Antonella. - In: JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY. - ISSN 2190-9385. - STAMPA. - 1:1(2010), pp. 33-40. [10.4416/JCST2010-00008]
A new bioactive glass composition for bioceramic scaffolds
BELLUCCI, Devis
;CANNILLO, Valeria;SOLA, Antonella
2010
Abstract
Bioactive-glass-derived scaffolds are crucial in bone tissue engineering since they act as temporary templates for tissue regrowth, providing structural support to the cells in a resulting 3D architecture. However, many issues remain open with regard to their design. On the one hand, bioceramic scaffolds should be bioactive, highly porous and should possess adequate mechanical properties; on the other hand, attempts to improve the mechanical properties of the widely used 45S5 Bioglass ® turn the bioactive glass itself into a glass-ceramic, with non-trivial effects on the resulting scaffold bioactivity. In this work, for the first time a new bioactive glass composition was employed to produce scaffolds for bone tissue engineering. The new glass composition can be treated at a relatively low temperature and it is characterized by a reduced tendency to crystallize compared to the 45S5 Bioglass ®. Moreover, the presented scaffolds are realized with a recently developed technique described here in detail. The resulting samples are highly porous and bioactive. Additionally, they possess a resistant and at the same time permeable surface similar to a shell, which ensures good manageability.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris