It has been conjectured by H. S. Witsenhausen that the maximum M(d,n) of $\sum_{x,y \in X} \|x−y\|_2$ over all sets X consistingof n points in the d-dimensional Euclidean space with unit diameter is attained if and only if the points of X are distributed as evenly as possible among the vertices of a regular d-dimensional simplex of edge-length 1. In this paper the authors give a proof of this conjecture.
The sum of squared distances under a diameter constraint, in arbitrary dimension / Benassi, Carlo 6/8/1962; Malagoli, Federica. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - STAMPA. - 90:(2008), pp. 471-480. [10.1007/s00013-008-2509-z]
The sum of squared distances under a diameter constraint, in arbitrary dimension
BENASSI, Carlo 6/8/1962;MALAGOLI, Federica
2008
Abstract
It has been conjectured by H. S. Witsenhausen that the maximum M(d,n) of $\sum_{x,y \in X} \|x−y\|_2$ over all sets X consistingof n points in the d-dimensional Euclidean space with unit diameter is attained if and only if the points of X are distributed as evenly as possible among the vertices of a regular d-dimensional simplex of edge-length 1. In this paper the authors give a proof of this conjecture.File | Dimensione | Formato | |
---|---|---|---|
Sum of squared distances.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
157.62 kB
Formato
Adobe PDF
|
157.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris