It has been conjectured by H. S. Witsenhausen that the maximum M(d,n) of $\sum_{x,y \in X} \|x−y\|_2$ over all sets X consistingof n points in the d-dimensional Euclidean space with unit diameter is attained if and only if the points of X are distributed as evenly as possible among the vertices of a regular d-dimensional simplex of edge-length 1. In this paper the authors give a proof of this conjecture.

The sum of squared distances under a diameter constraint, in arbitrary dimension / Benassi, Carlo 6/8/1962; Malagoli, Federica. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - STAMPA. - 90:(2008), pp. 471-480. [10.1007/s00013-008-2509-z]

The sum of squared distances under a diameter constraint, in arbitrary dimension

BENASSI, Carlo 6/8/1962;MALAGOLI, Federica
2008

Abstract

It has been conjectured by H. S. Witsenhausen that the maximum M(d,n) of $\sum_{x,y \in X} \|x−y\|_2$ over all sets X consistingof n points in the d-dimensional Euclidean space with unit diameter is attained if and only if the points of X are distributed as evenly as possible among the vertices of a regular d-dimensional simplex of edge-length 1. In this paper the authors give a proof of this conjecture.
2008
90
471
480
The sum of squared distances under a diameter constraint, in arbitrary dimension / Benassi, Carlo 6/8/1962; Malagoli, Federica. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - STAMPA. - 90:(2008), pp. 471-480. [10.1007/s00013-008-2509-z]
Benassi, Carlo 6/8/1962; Malagoli, Federica
File in questo prodotto:
File Dimensione Formato  
Sum of squared distances.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 157.62 kB
Formato Adobe PDF
157.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/644741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact