The automatic and unobtrusive identification of user’s activities is one of the challenging goals of context-aware computing. This paper discusses and experimentally evaluates instance-based algorithms to infer user’s activities on the basis of data acquired from body-worn accelerometer sensors. We show that instance-based algorithms can classify simple and specific activities with high accuracy. In addition, due to their low requirements, we show how they can be implemented on severely resource-constrained devices. Finally, we propose mechanisms to take advantage of the temporal dimension of the signal, and to identify novel activities at run time.
Detecting Activities from Body-Worn Accelerometers via Instance-based Algorithms / Bicocchi, Nicola; Mamei, Marco; Zambonelli, Franco. - In: PERVASIVE AND MOBILE COMPUTING. - ISSN 1574-1192. - STAMPA. - 6(2010), pp. 482-495.
Data di pubblicazione: | 2010 |
Titolo: | Detecting Activities from Body-Worn Accelerometers via Instance-based Algorithms |
Autore/i: | Bicocchi, Nicola; Mamei, Marco; Zambonelli, Franco |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.pmcj.2010.03.004 |
Rivista: | |
Volume: | 6 |
Pagina iniziale: | 482 |
Pagina finale: | 495 |
Codice identificativo ISI: | WOS:000208192900007 |
Codice identificativo Scopus: | 2-s2.0-77956411876 |
Citazione: | Detecting Activities from Body-Worn Accelerometers via Instance-based Algorithms / Bicocchi, Nicola; Mamei, Marco; Zambonelli, Franco. - In: PERVASIVE AND MOBILE COMPUTING. - ISSN 1574-1192. - STAMPA. - 6(2010), pp. 482-495. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
human-pcm.pdf | Post-print dell'autore (bozza post referaggio) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris