In this paper I describe a wavelet filtering approach to separate a time series, the signal, into its main components. With this approach I can separate stochastic from structural components. The statistical predictive analysis will be performed on the filtered signal while the stochastic term could be a-posteriori reintroduced through statistical simulation approaches (such as Markov Chain Monte Carlo). The proposed metodology has been applied to financial time series to predict both returns and risk.

Wavelet filtering for prediction in Time Series Analysis / Minerva, Tommaso. - STAMPA. - (2010), pp. 89-95. (Intervento presentato al convegno 10th WSEAS International Conference on Wavelet Analysis and Multirate Systems, WAMUS '10, 9th WSEAS International Conference on Non-Linear Analysis, Non-Linear Systems and Chaos, NOLASC '10 tenutosi a Sousse, tun nel 2010).

Wavelet filtering for prediction in Time Series Analysis

MINERVA, Tommaso
2010

Abstract

In this paper I describe a wavelet filtering approach to separate a time series, the signal, into its main components. With this approach I can separate stochastic from structural components. The statistical predictive analysis will be performed on the filtered signal while the stochastic term could be a-posteriori reintroduced through statistical simulation approaches (such as Markov Chain Monte Carlo). The proposed metodology has been applied to financial time series to predict both returns and risk.
2010
10th WSEAS International Conference on Wavelet Analysis and Multirate Systems, WAMUS '10, 9th WSEAS International Conference on Non-Linear Analysis, Non-Linear Systems and Chaos, NOLASC '10
Sousse, tun
2010
89
95
Minerva, Tommaso
Wavelet filtering for prediction in Time Series Analysis / Minerva, Tommaso. - STAMPA. - (2010), pp. 89-95. (Intervento presentato al convegno 10th WSEAS International Conference on Wavelet Analysis and Multirate Systems, WAMUS '10, 9th WSEAS International Conference on Non-Linear Analysis, Non-Linear Systems and Chaos, NOLASC '10 tenutosi a Sousse, tun nel 2010).
File in questo prodotto:
File Dimensione Formato  
wavelet_filtering.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/642048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact