It is known that finding a Nash equilibrium for win-lose bimatrixgames, i.e., two-player garnes where the players' payoffs are zero andone, is complete for the class PPAD. We describe a linear timealgorithm which computes a Nash equilibrium for win-lose bimatrixgarnes where the number of winning positions per strategy of each ofthe players is at most two. The algorithm acts on the directed graphthat represents the zero-one pattern of the payoff matrices describingthe game. It is based upon the efficient detection of certain subgraphswhich enable us to determine the support of a Nash equilibrium.
Efficient computation of Nash equilibria for very sparse win-lose bimatrix games / B., Codenotti; Leoncini, Mauro; G., Resta. - STAMPA. - 4168:(2006), pp. 232-243. (Intervento presentato al convegno 14th Annual European Symposium on Algorithms, ESA 2006 tenutosi a Zurich, che nel September 11-15, 2006) [10.1007/11841036_23].
Efficient computation of Nash equilibria for very sparse win-lose bimatrix games
LEONCINI, Mauro;
2006
Abstract
It is known that finding a Nash equilibrium for win-lose bimatrixgames, i.e., two-player garnes where the players' payoffs are zero andone, is complete for the class PPAD. We describe a linear timealgorithm which computes a Nash equilibrium for win-lose bimatrixgarnes where the number of winning positions per strategy of each ofthe players is at most two. The algorithm acts on the directed graphthat represents the zero-one pattern of the payoff matrices describingthe game. It is based upon the efficient detection of certain subgraphswhich enable us to determine the support of a Nash equilibrium.File | Dimensione | Formato | |
---|---|---|---|
lncs4168pp232-243.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
448.12 kB
Formato
Adobe PDF
|
448.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris