Two 75%Cr3C2-25%NiCr feedstock powders with the same size distribution but different production process were characterized and found quite different in terms of morphology and phase composition. The powders were sprayed in a HVOF Diamond Jet (Sulzer Metco DJ-2600) torch with five different values of the oxygen-to-hydrogen ratio in order to assess the influence of this parameter on the microstructure and properties of the coatings. The results show that the closed and dense microstructure of one powder (Woka 7302) results in coatings with lower amount of decarburization, less oxide formation and higher toughness compared to coatings from the other powder (Praxair 1375). It was found that the O2/H2 ratio impacts mainly on the Young's modulus, which almost doubled by changing the ratio from 0.40 to 0.50, and on toughness, but does not notably affect the Vickers hardness.
Cr3C2-NiCr HVOF-Sprayed Coatings: Microstructure and Properties Versus Powder Characteristics and Process Parameters / Prudenziati, Maria; G. C., Gazzadi; M., Medici; G., Dalbagni; M., Caliari. - In: JOURNAL OF THERMAL SPRAY TECHNOLOGY. - ISSN 1059-9630. - STAMPA. - 19:3(2010), pp. 541-550. [10.1007/s11666-009-9458-3]
Cr3C2-NiCr HVOF-Sprayed Coatings: Microstructure and Properties Versus Powder Characteristics and Process Parameters
PRUDENZIATI, Maria;
2010
Abstract
Two 75%Cr3C2-25%NiCr feedstock powders with the same size distribution but different production process were characterized and found quite different in terms of morphology and phase composition. The powders were sprayed in a HVOF Diamond Jet (Sulzer Metco DJ-2600) torch with five different values of the oxygen-to-hydrogen ratio in order to assess the influence of this parameter on the microstructure and properties of the coatings. The results show that the closed and dense microstructure of one powder (Woka 7302) results in coatings with lower amount of decarburization, less oxide formation and higher toughness compared to coatings from the other powder (Praxair 1375). It was found that the O2/H2 ratio impacts mainly on the Young's modulus, which almost doubled by changing the ratio from 0.40 to 0.50, and on toughness, but does not notably affect the Vickers hardness.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris