The paper describes an efficient procedure, based on standard finite element techniques, for the failure analysis of bonded structures. Modelled with structural elements, the adherends are attached by means of standard kinematic constraints to a single layer of solid elements reproducing the adhesive. The work assesses the accuracy of the proposed method in the prediction of the post-elastic response of adhesive joints by applying a singularity-free stress failure criterion. Benchmarks for the model are the load–deflection curves obtained by an ad-hoc experimental campaign on steel and aluminium T-peel joints. The accuracy of the model appears very good with respect to the experimental results, both in terms of maximum force and post-elastic behaviour. The failure criterion adopted appears well-founded and the CPU time needed for the analysis is minimum thus corroborating this efficient procedure for the analysis of very complex structures.
Failure analysis of bonded T-peel joints: Efficient modelling by standard finite elements with experimental validation / Castagnetti, Davide; Dragoni, Eugenio; Spaggiari, Andrea. - In: INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES. - ISSN 0143-7496. - STAMPA. - 30:(2010), pp. 306-312. [10.1016/j.ijadhadh.2009.10.004]
Failure analysis of bonded T-peel joints: Efficient modelling by standard finite elements with experimental validation
CASTAGNETTI, Davide;DRAGONI, Eugenio;SPAGGIARI, Andrea
2010-01-01
Abstract
The paper describes an efficient procedure, based on standard finite element techniques, for the failure analysis of bonded structures. Modelled with structural elements, the adherends are attached by means of standard kinematic constraints to a single layer of solid elements reproducing the adhesive. The work assesses the accuracy of the proposed method in the prediction of the post-elastic response of adhesive joints by applying a singularity-free stress failure criterion. Benchmarks for the model are the load–deflection curves obtained by an ad-hoc experimental campaign on steel and aluminium T-peel joints. The accuracy of the model appears very good with respect to the experimental results, both in terms of maximum force and post-elastic behaviour. The failure criterion adopted appears well-founded and the CPU time needed for the analysis is minimum thus corroborating this efficient procedure for the analysis of very complex structures.File | Dimensione | Formato | |
---|---|---|---|
IJAA10-Casta-Drago-Spaggio.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris