This paper deals with the semilinear multivalued evolution equationx'(t) + A(t)x(t) Є F(t, x(t)), t Є [a, b] and x Є E,in an arbitrary Banach space E.The linear operators {A(t) : t Є [a, b]} are densely defined on a common domain in E and generate a strongly continuous evolution system. We discuss the existence of mild periodic solutions, also in the case when the nonlinear term F depends on aretarded argument. We also show that in both cases the solutions set is compact. The proofs are based on topological arguments and make use of the theory of condensing multimaps.

Periodic Solutions of Semilinear Multivalued and Functional Evolution Equations in Banach Spaces / Cecchini, Simone; Malaguti, Luisa. - In: DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS. - ISSN 0971-3514. - STAMPA. - 17:(2009), pp. 365-377. [10.1007/s12591-009-0026-6]

Periodic Solutions of Semilinear Multivalued and Functional Evolution Equations in Banach Spaces

CECCHINI, Simone;MALAGUTI, Luisa
2009

Abstract

This paper deals with the semilinear multivalued evolution equationx'(t) + A(t)x(t) Є F(t, x(t)), t Є [a, b] and x Є E,in an arbitrary Banach space E.The linear operators {A(t) : t Є [a, b]} are densely defined on a common domain in E and generate a strongly continuous evolution system. We discuss the existence of mild periodic solutions, also in the case when the nonlinear term F depends on aretarded argument. We also show that in both cases the solutions set is compact. The proofs are based on topological arguments and make use of the theory of condensing multimaps.
2009
17
365
377
Periodic Solutions of Semilinear Multivalued and Functional Evolution Equations in Banach Spaces / Cecchini, Simone; Malaguti, Luisa. - In: DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS. - ISSN 0971-3514. - STAMPA. - 17:(2009), pp. 365-377. [10.1007/s12591-009-0026-6]
Cecchini, Simone; Malaguti, Luisa
File in questo prodotto:
File Dimensione Formato  
Cecchini Malaguti 2009.pdf

Accesso riservato

Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 217.2 kB
Formato Adobe PDF
217.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/640265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact