The evolutionary and physical deformability patterns of members of the Ras GTPase superfamily were investigated by Principal Component and Elastic Network-Normal Mode analyses. The study helped to decipher the dynamics information encrypted into the conserved core and to separate the trans-family intrinsic flexibility associated with a common function from the protein motions related to functional specialization of selected families or family members. The conserved core is dynamically divided into two lobes. The deformation modes, which allow the Ras GTPases to accomplish their switching function, are conserved along evolution and are localized in lobe 1 portions close to the nucleotide. These modes lead to functional specialization when associated with evolution-driven deformations of protein portions essentially located in lobe 2, distal from the nucleotide, and involved in peculiar interactions with membrane, guanine nucleotide exchange factors, or effectors. Overall, a complete picture of the functional and evolutionary dynamics of the Ras superfamily emerges.

Deciphering the deformation modes associated with function retention and specialization in members of the Ras superfamily / Raimondi, Francesco; M., Orozco; Fanelli, Francesca. - In: STRUCTURE. - ISSN 0969-2126. - ELETTRONICO. - 18:(2010), pp. 402-414. [10.1016/j.str.2009.12.015]

Deciphering the deformation modes associated with function retention and specialization in members of the Ras superfamily

RAIMONDI, Francesco;FANELLI, Francesca
2010

Abstract

The evolutionary and physical deformability patterns of members of the Ras GTPase superfamily were investigated by Principal Component and Elastic Network-Normal Mode analyses. The study helped to decipher the dynamics information encrypted into the conserved core and to separate the trans-family intrinsic flexibility associated with a common function from the protein motions related to functional specialization of selected families or family members. The conserved core is dynamically divided into two lobes. The deformation modes, which allow the Ras GTPases to accomplish their switching function, are conserved along evolution and are localized in lobe 1 portions close to the nucleotide. These modes lead to functional specialization when associated with evolution-driven deformations of protein portions essentially located in lobe 2, distal from the nucleotide, and involved in peculiar interactions with membrane, guanine nucleotide exchange factors, or effectors. Overall, a complete picture of the functional and evolutionary dynamics of the Ras superfamily emerges.
2010
18
402
414
Deciphering the deformation modes associated with function retention and specialization in members of the Ras superfamily / Raimondi, Francesco; M., Orozco; Fanelli, Francesca. - In: STRUCTURE. - ISSN 0969-2126. - ELETTRONICO. - 18:(2010), pp. 402-414. [10.1016/j.str.2009.12.015]
Raimondi, Francesco; M., Orozco; Fanelli, Francesca
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/639776
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 43
social impact