The XY model with quenched random disorder is studied numerically at T = 0 by a defect scaling method as a model of a disordered superconductor. In 3D we find that, in the absence of screening, a vortex glass phase exists at low T for large disorder in 3D with stiffness exponent θ ≈ +0.31 and with finite screening and in 2D this phase does not exist. For weak disorder, a superconducting phase exists which we identify as a Bragg glass. In the presence of screened vortex-vortex interactions, the vortex glass does not exist but the Bragg glass does. © 2004 Elsevier B.V. All rights reserved.
Numerical study of random superconductors / Giardina', Cristian; J. M., Kosterlitz; N. V., Priezjev; N., Akino. - In: PHYSICA. C, SUPERCONDUCTIVITY. - ISSN 0921-4534. - ELETTRONICO. - 408-410:1-4(2004), pp. 484-486. [10.1016/j.physc.2004.03.184]
Numerical study of random superconductors
GIARDINA', Cristian;
2004
Abstract
The XY model with quenched random disorder is studied numerically at T = 0 by a defect scaling method as a model of a disordered superconductor. In 3D we find that, in the absence of screening, a vortex glass phase exists at low T for large disorder in 3D with stiffness exponent θ ≈ +0.31 and with finite screening and in 2D this phase does not exist. For weak disorder, a superconducting phase exists which we identify as a Bragg glass. In the presence of screened vortex-vortex interactions, the vortex glass does not exist but the Bragg glass does. © 2004 Elsevier B.V. All rights reserved.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris