The random orthogonal model (ROM) of Marinari-Parisi-Ritort [13, 14] is a model of statistical mechanics where the couplings among the spins are defined by a matrix chosen randomly within the orthogonal ensemble. It reproduces the most relevant properties of the Parisi solution of the Sherrington-Kirkpatrick model. Here we compute the energy distribution, and work out an estimate for the two-point correlation function. Moreover, we show an exponential increase with the system size of the number of metastable states also for non-zero magnetic field.

Energy landscape statistics of the random orthogonal model / Giardina', Cristian; M., Degli Esposti; S., Graffi. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL. - ISSN 0305-4470. - STAMPA. - 36:12(2003), pp. 2983-2994. [10.1088/0305-4470/36/12/308]

Energy landscape statistics of the random orthogonal model

GIARDINA', Cristian;
2003

Abstract

The random orthogonal model (ROM) of Marinari-Parisi-Ritort [13, 14] is a model of statistical mechanics where the couplings among the spins are defined by a matrix chosen randomly within the orthogonal ensemble. It reproduces the most relevant properties of the Parisi solution of the Sherrington-Kirkpatrick model. Here we compute the energy distribution, and work out an estimate for the two-point correlation function. Moreover, we show an exponential increase with the system size of the number of metastable states also for non-zero magnetic field.
2003
36
12
2983
2994
Energy landscape statistics of the random orthogonal model / Giardina', Cristian; M., Degli Esposti; S., Graffi. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL. - ISSN 0305-4470. - STAMPA. - 36:12(2003), pp. 2983-2994. [10.1088/0305-4470/36/12/308]
Giardina', Cristian; M., Degli Esposti; S., Graffi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/639586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact