We consider a time-dependent one-dimensional nonlinear Schrodinger equation with a symmetric double-well potential represented by two Dirac’s δ. Among our results we give an explicit formula for the integral kernel of the unitarysemigroup associated with the linear part of the Hamiltonian. Then we establish the corresponding Strichartz-type estimate and we prove local existence and uniqueness of the solution to the original nonlinear problem.

A nonlinear Schrodinger equation with two symmetric point interactions in one dimension / Hynek, Kovarık; Sacchetti, Andrea. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - STAMPA. - 43:15(2010), pp. 1-16. [10.1088/1751-8113/43/15/155205]

A nonlinear Schrodinger equation with two symmetric point interactions in one dimension

SACCHETTI, Andrea
2010

Abstract

We consider a time-dependent one-dimensional nonlinear Schrodinger equation with a symmetric double-well potential represented by two Dirac’s δ. Among our results we give an explicit formula for the integral kernel of the unitarysemigroup associated with the linear part of the Hamiltonian. Then we establish the corresponding Strichartz-type estimate and we prove local existence and uniqueness of the solution to the original nonlinear problem.
2010
43
15
1
16
A nonlinear Schrodinger equation with two symmetric point interactions in one dimension / Hynek, Kovarık; Sacchetti, Andrea. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - STAMPA. - 43:15(2010), pp. 1-16. [10.1088/1751-8113/43/15/155205]
Hynek, Kovarık; Sacchetti, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/639320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact