In this paper we face the problem of clustering mixedmode data by assuming that the observed binary variables aregenerated from latent continuous variables. We perform a principalcomponents analysis on the matrix of tetrachoric correlations and wethen estimate the scores of each latent variable and construct adata matrix with continuous variables to be used in fully Guassianmixture models or in the k-means cluster analysis. The calculationof the expected a posteriori (EAP) estimates may proceed by simplyconsidering a limited number of quadrature points. Results on asimulation study and on a real data set are reported.
Mixed mode data clustering: an approach based on tectrachoric correlations / Morlini, Isabella. - STAMPA. - (2011), pp. 95-103. (Intervento presentato al convegno 1st Joint Meeting of the Societe Francophone de Classification and the Classification and Data Analysis Group of the Italian Statistical Society, SFC-CLADAG 2008 tenutosi a Caserta, ita nel 2008) [10.1007/978-3-642-13312-1_9].
Mixed mode data clustering: an approach based on tectrachoric correlations
MORLINI, Isabella
2011
Abstract
In this paper we face the problem of clustering mixedmode data by assuming that the observed binary variables aregenerated from latent continuous variables. We perform a principalcomponents analysis on the matrix of tetrachoric correlations and wethen estimate the scores of each latent variable and construct adata matrix with continuous variables to be used in fully Guassianmixture models or in the k-means cluster analysis. The calculationof the expected a posteriori (EAP) estimates may proceed by simplyconsidering a limited number of quadrature points. Results on asimulation study and on a real data set are reported.File | Dimensione | Formato | |
---|---|---|---|
2011 Springer Morlini.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
417.97 kB
Formato
Adobe PDF
|
417.97 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris