In this paper we face the problem of clustering mixedmode data by assuming that the observed binary variables aregenerated from latent continuous variables. We perform a principalcomponents analysis on the matrix of tetrachoric correlations and wethen estimate the scores of each latent variable and construct adata matrix with continuous variables to be used in fully Guassianmixture models or in the k-means cluster analysis. The calculationof the expected a posteriori (EAP) estimates may proceed by simplyconsidering a limited number of quadrature points. Results on asimulation study and on a real data set are reported.

Mixed mode data clustering: an approach based on tectrachoric correlations / Morlini, Isabella. - STAMPA. - (2011), pp. 95-103. [10.1007/978-3-642-13312-1_9]

Mixed mode data clustering: an approach based on tectrachoric correlations

MORLINI, Isabella
2011

Abstract

In this paper we face the problem of clustering mixedmode data by assuming that the observed binary variables aregenerated from latent continuous variables. We perform a principalcomponents analysis on the matrix of tetrachoric correlations and wethen estimate the scores of each latent variable and construct adata matrix with continuous variables to be used in fully Guassianmixture models or in the k-means cluster analysis. The calculationof the expected a posteriori (EAP) estimates may proceed by simplyconsidering a limited number of quadrature points. Results on asimulation study and on a real data set are reported.
95
103
Morlini, Isabella
Mixed mode data clustering: an approach based on tectrachoric correlations / Morlini, Isabella. - STAMPA. - (2011), pp. 95-103. [10.1007/978-3-642-13312-1_9]
File in questo prodotto:
File Dimensione Formato  
2011 Springer Morlini.pdf

accesso aperto

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 417.97 kB
Formato Adobe PDF
417.97 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/635499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact