We prove the Pade (Stieltjes) summability of the perturbation series of anyenergy level En,1(β), n \in N, of the cubic anharmonic oscillator, H1(β) =p^2 +x^2 +i√βx^3, as suggested by the numerical studies of Bender andWeniger.At the same time, we give a simple proof of the positivity of every levelof the PT -symmetric Hamiltonian H1(β) for positive β (Bessis–Zinn Justinconjecture). The n zeros, of a state ψ_n,1(β), stable at β = 0, are confinedfor β on the cut complex plane, and are related to the level En,1(β) by theBohr–Sommerfeld quantization rule (semiclassical phase-integral condition).We also prove the absence of non-perturbative eigenvalues and the simplicityof the spectrum of our Hamiltonians.
Pade' summability of the cubic oscillator / Vincenzo, Grecchi; Maioli, Marco; Andre', Martinez. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - STAMPA. - 42:(2009), pp. 425208-425224. [10.1088/1751-8113/42/42/425208]
Pade' summability of the cubic oscillator
MAIOLI, Marco;
2009
Abstract
We prove the Pade (Stieltjes) summability of the perturbation series of anyenergy level En,1(β), n \in N, of the cubic anharmonic oscillator, H1(β) =p^2 +x^2 +i√βx^3, as suggested by the numerical studies of Bender andWeniger.At the same time, we give a simple proof of the positivity of every levelof the PT -symmetric Hamiltonian H1(β) for positive β (Bessis–Zinn Justinconjecture). The n zeros, of a state ψ_n,1(β), stable at β = 0, are confinedfor β on the cut complex plane, and are related to the level En,1(β) by theBohr–Sommerfeld quantization rule (semiclassical phase-integral condition).We also prove the absence of non-perturbative eigenvalues and the simplicityof the spectrum of our Hamiltonians.File | Dimensione | Formato | |
---|---|---|---|
pade2009jphysa.pdf
Accesso riservato
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
310.94 kB
Formato
Adobe PDF
|
310.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris