In this paper we introduce new similarity indexes forcategorical data with nominal scale. In contrast to traditionallyused similarity measures, they also consider the frequency of themodalities of each attribute in the sample. This feature is usefulwhen dealing with rare categories, since it makes sense todifferently evaluate the pairwise presence of a rare category fromthe pairwise presence of a widespread one. We also propose aspecific weighted index for dependent categorical variables. Thesuitability of the proposed measures from a marketing researchperspective is shown using two real world data sets.
New weighed similarity indexes for market segmentation using categorical variables / Morlini, Isabella; S., Zani. - STAMPA. - (2011), pp. 543-551. (Intervento presentato al convegno 7th Biannual Meeting of the Classification and Data Analysis Group, CLADAG 2009 nel 2009) [10.1007/978-3-642-11363-5_61].
New weighed similarity indexes for market segmentation using categorical variables
MORLINI, Isabella;
2011
Abstract
In this paper we introduce new similarity indexes forcategorical data with nominal scale. In contrast to traditionallyused similarity measures, they also consider the frequency of themodalities of each attribute in the sample. This feature is usefulwhen dealing with rare categories, since it makes sense todifferently evaluate the pairwise presence of a rare category fromthe pairwise presence of a widespread one. We also propose aspecific weighted index for dependent categorical variables. Thesuitability of the proposed measures from a marketing researchperspective is shown using two real world data sets.File | Dimensione | Formato | |
---|---|---|---|
2011 Springer Morlini Zani.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
255.22 kB
Formato
Adobe PDF
|
255.22 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris