Here we consider stationary states for nonlinear Schrödinger equations in any spatial dimension n with symmetric double well potentials. These states may bifurcate as the strength of the nonlinear term increases and we observe two different pictures depending on the value of the nonlinearity power: a supercritical pitchfork bifurcation, and a subcritical pitchfork bifurcation with two asymmetric branches occurring as the result of saddle-node bifurcations. We show that in the semiclassical limit, or for a large barrier between the two wells, the first kind of bifurcation always occurs when the nonlinearity power is less than a critical value; in contrast, when the nonlinearity power is larger than such a critical value then we always observe the second scenario. The remarkable fact is that such a critical value is a universal constant in the sense that it does not depend on the shape of the double well potential and on the dimension n.
Universal Critical Power for Nonlinear Schrödinger Equations with a Symmetric Double Well Potential / SACCHETTI, Andrea. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 103(2009), p. 194101.
Data di pubblicazione: | 2009 |
Titolo: | Universal Critical Power for Nonlinear Schrödinger Equations with a Symmetric Double Well Potential |
Autore/i: | SACCHETTI, Andrea |
Autore/i UNIMORE: | |
Rivista: | |
Volume: | 103 |
Pagina iniziale: | 194101 |
Codice identificativo ISI: | WOS:000271568200013 |
Codice identificativo Scopus: | 2-s2.0-70450060025 |
Codice identificativo Pubmed: | 20365923 |
Citazione: | Universal Critical Power for Nonlinear Schrödinger Equations with a Symmetric Double Well Potential / SACCHETTI, Andrea. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 103(2009), p. 194101. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
PRL_Sacchetti_2009_VQR.pdf | Altro materiale allegato | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris