We consider, for any odd positive integer k, the degenerate Partial Differential Equationu_t = u_xx + x^k u_yand we prove a Harnack inequality which is expressed in terms of the integral curves of the vector fields that occur in the PDE. The novelty of our result is in that, as k>1, we cannot assume the existence of any Lie group in R^3 such that the vector fields are invariant. As an application of the Harnack inequality we prove a lower bond of the fundamental solution.

Harnack inequalities and Lifting Procedure for Evolution Hypoelliptic Equations / C., Cinti; Polidoro, Sergio. - STAMPA. - VII:(2008), pp. 93-105. (Intervento presentato al convegno Geometric Methods in PDE's: a conference on the occasion of the 65th birthday of Ermanno Lanconelli tenutosi a Bologna nel 27-30 maggio 2008).

Harnack inequalities and Lifting Procedure for Evolution Hypoelliptic Equations

POLIDORO, Sergio
2008

Abstract

We consider, for any odd positive integer k, the degenerate Partial Differential Equationu_t = u_xx + x^k u_yand we prove a Harnack inequality which is expressed in terms of the integral curves of the vector fields that occur in the PDE. The novelty of our result is in that, as k>1, we cannot assume the existence of any Lie group in R^3 such that the vector fields are invariant. As an application of the Harnack inequality we prove a lower bond of the fundamental solution.
2008
Geometric Methods in PDE's: a conference on the occasion of the 65th birthday of Ermanno Lanconelli
Bologna
27-30 maggio 2008
VII
93
105
C., Cinti; Polidoro, Sergio
Harnack inequalities and Lifting Procedure for Evolution Hypoelliptic Equations / C., Cinti; Polidoro, Sergio. - STAMPA. - VII:(2008), pp. 93-105. (Intervento presentato al convegno Geometric Methods in PDE's: a conference on the occasion of the 65th birthday of Ermanno Lanconelli tenutosi a Bologna nel 27-30 maggio 2008).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/621235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact