This paper deals with the detection of distributed roughness on ball-bearings mounted on electric motors. Ball bearings allows the rotation of the motor’s shaft and moreover they are intensively used in industrial applications, so a failure of those components produces unexpected downtime of the line-production. Most of the literature techniques focus on the early detection of localized faults on bearing (eg. on the outer ring) in order to determine the bearing life and to plan the bearing replacing. Localized faults can be detected because they have characteristic signatures which is revealed in the frequency spectrum of the vibration signal acquired by an external sensor, eg. accelerometer. Unfortunately other faults exist which do not have a characteristic signatures and then they could not be foreseen accurately: eg. the distributed roughness. In this paper the motor stator current energy is proposed as a fault indicator to identify the presence of the distributed roughness on the bearing. Moreover an orthogonal experiment is set to analyse, through a General Linear Model (GLM), the dependencies of the current energy to the roughness level, but also to other two environmental conditions: the motor velocity and the loads applied externally. ANOVA investigates the statistical significance of the considered factors.
On the Detection of Distributed Roughness on Ball Bearings Via Stator Current Energy: Experimental Results / G., Curcuru'; Cocconcelli, Marco; Immovilli, Fabio; Rubini, Riccardo. - In: DIAGNOSTYKA. - ISSN 1641-6414. - STAMPA. - 3 (51):(2009), pp. 17-21.
On the Detection of Distributed Roughness on Ball Bearings Via Stator Current Energy: Experimental Results
COCCONCELLI, Marco;IMMOVILLI, Fabio;RUBINI, Riccardo
2009
Abstract
This paper deals with the detection of distributed roughness on ball-bearings mounted on electric motors. Ball bearings allows the rotation of the motor’s shaft and moreover they are intensively used in industrial applications, so a failure of those components produces unexpected downtime of the line-production. Most of the literature techniques focus on the early detection of localized faults on bearing (eg. on the outer ring) in order to determine the bearing life and to plan the bearing replacing. Localized faults can be detected because they have characteristic signatures which is revealed in the frequency spectrum of the vibration signal acquired by an external sensor, eg. accelerometer. Unfortunately other faults exist which do not have a characteristic signatures and then they could not be foreseen accurately: eg. the distributed roughness. In this paper the motor stator current energy is proposed as a fault indicator to identify the presence of the distributed roughness on the bearing. Moreover an orthogonal experiment is set to analyse, through a General Linear Model (GLM), the dependencies of the current energy to the roughness level, but also to other two environmental conditions: the motor velocity and the loads applied externally. ANOVA investigates the statistical significance of the considered factors.File | Dimensione | Formato | |
---|---|---|---|
diagnostyka 3(51) 2009.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
7 MB
Formato
Adobe PDF
|
7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris