Gradient type methods are widely used approaches for nonlinearprogramming in image processing, due to their simplicity, low memory requirement and ability to provide medium-accurate solutions without excessive computational costs. In this work we discuss some improved gradient projection methods for constrained optimization problems in image deblurring and denoising. Crucial feature of these approaches is the combination of special steplength rules and scaled gradient directions, appropriately designed to achieve a better convergence rate. Convergence results are given by exploiting monotone or nonmonotone line-search strategies along the feasible direction. The effectiveness of the algorithms is evaluated on the problems arising from the maximum likelihood approach to the deconvolution of images and from the edge-preserving removal of Poisson noise. Numerical results obtained by facing large scale problems involving images of several mega-pixels on graphics processors are also reported.
Gradient projection approaches for optimization problems in image deblurring and denoising / Bonettini, Silvia; F., Benvenuto; Zanella, Riccardo; Zanni, Luca; M., Bertero. - ELETTRONICO. - (2009), pp. 1384-1388. (Intervento presentato al convegno 17th European Signal Processing Conference, EUSIPCO 2009 tenutosi a Glasgow, gbr nel 24-28 agosto 2009).
Gradient projection approaches for optimization problems in image deblurring and denoising
BONETTINI, Silvia;ZANELLA, RICCARDO;ZANNI, Luca;
2009
Abstract
Gradient type methods are widely used approaches for nonlinearprogramming in image processing, due to their simplicity, low memory requirement and ability to provide medium-accurate solutions without excessive computational costs. In this work we discuss some improved gradient projection methods for constrained optimization problems in image deblurring and denoising. Crucial feature of these approaches is the combination of special steplength rules and scaled gradient directions, appropriately designed to achieve a better convergence rate. Convergence results are given by exploiting monotone or nonmonotone line-search strategies along the feasible direction. The effectiveness of the algorithms is evaluated on the problems arising from the maximum likelihood approach to the deconvolution of images and from the edge-preserving removal of Poisson noise. Numerical results obtained by facing large scale problems involving images of several mega-pixels on graphics processors are also reported.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris