We consider an economical model where a single commodity can be either consumed or invested. We assume that investments are irreversible and study the problem of maximizing a disconted utility functional on an unbounded time interval. Using existence theorems for infinite-horizon optimal control problmes, we prove the existence of strongly optimal solutions. The result obtained generalizes a previous one due to Arrow-Kurz.
Optimal Solutions in a Growth Model with Irreversible Investments / Malaguti, Luisa. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DELL'UNIVERSITA' DI MODENA. - ISSN 0041-8986. - STAMPA. - XLIV:(1996), pp. 187-207.
Optimal Solutions in a Growth Model with Irreversible Investments
MALAGUTI, Luisa
1996
Abstract
We consider an economical model where a single commodity can be either consumed or invested. We assume that investments are irreversible and study the problem of maximizing a disconted utility functional on an unbounded time interval. Using existence theorems for infinite-horizon optimal control problmes, we prove the existence of strongly optimal solutions. The result obtained generalizes a previous one due to Arrow-Kurz.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris