In this paper we prove optimal interior regularity for solutions to the obstacle problem for a class of second order differential operators of Kolmogorov type. We treat smooth obstaclesas well as non-smooth obstacles. All our proofs follow the same line of thought and are based on blow-ups, compactness, barriers and arguments by contradiction. This problem arises in financial mathematics, when considering path-dependent derivative contracts with the early exercise feature.

Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options / M., Frentz; K., Nystrom; A., Pascucci; Polidoro, Sergio. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 347:4(2010), pp. 805-838. [10.1007/s00208-009-0456-z]

Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options

POLIDORO, Sergio
2010

Abstract

In this paper we prove optimal interior regularity for solutions to the obstacle problem for a class of second order differential operators of Kolmogorov type. We treat smooth obstaclesas well as non-smooth obstacles. All our proofs follow the same line of thought and are based on blow-ups, compactness, barriers and arguments by contradiction. This problem arises in financial mathematics, when considering path-dependent derivative contracts with the early exercise feature.
2010
347
4
805
838
Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options / M., Frentz; K., Nystrom; A., Pascucci; Polidoro, Sergio. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 347:4(2010), pp. 805-838. [10.1007/s00208-009-0456-z]
M., Frentz; K., Nystrom; A., Pascucci; Polidoro, Sergio
File in questo prodotto:
File Dimensione Formato  
FNPP.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 374.94 kB
Formato Adobe PDF
374.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/616657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact