We prove, under a pinching hypothesis, a theorem of existence ofat least n periodic orbits for a closed regular energy hypersurface$\Sigma$ in $\mathbb{R}^{2n}$ which is the level set of a natural (i.e. of the type "potential + kinetic energy") Hamiltonian function and projects onto a potential well in the configuration space.

We prove, under a pinching hypothesis, a theorem of existence of at least n periodic orbits for a closed regular energy hypersurface Σ in R2 n which is the level set of a natural (i.e. of the type "potential + kinetic energy") Hamiltonian function and projects onto a potential well in the configuration space. © 2008 Elsevier Inc. All rights reserved.

Existence of multiple periodic solutions for a natural Hamiltonian system in a potential well / Villarini, Massimo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 246:3(2009), pp. 1207-1234. [10.1016/j.jde.2008.08.003]

Existence of multiple periodic solutions for a natural Hamiltonian system in a potential well

VILLARINI, Massimo
2009

Abstract

We prove, under a pinching hypothesis, a theorem of existence of at least n periodic orbits for a closed regular energy hypersurface Σ in R2 n which is the level set of a natural (i.e. of the type "potential + kinetic energy") Hamiltonian function and projects onto a potential well in the configuration space. © 2008 Elsevier Inc. All rights reserved.
2009
246
3
1207
1234
Existence of multiple periodic solutions for a natural Hamiltonian system in a potential well / Villarini, Massimo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 246:3(2009), pp. 1207-1234. [10.1016/j.jde.2008.08.003]
Villarini, Massimo
File in questo prodotto:
File Dimensione Formato  
jde2009.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 445.71 kB
Formato Adobe PDF
445.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/616257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact