We consider 2-factorizations of complete graphs which possess an automorphism group fixing k\ge 0 vertices and acting sharply transitively on the others. We study the structures of such factorizations and consider the cases in which the group is either abelian or dihedral in somemore details. We prove that the class of 2-factorizations of complete graphs is universal. Namely each finite group is the full automorphism group of a 2-factorization of the class.
On 2-factorizations of the complete graph: from the k-pyramidal to the universal property / Bonvicini, Simona; G., Mazzuoccolo; Rinaldi, Gloria. - In: JOURNAL OF COMBINATORIAL DESIGNS. - ISSN 1063-8539. - STAMPA. - 17:3(2009), pp. 211-228. [10.1002/jcd.20205]
On 2-factorizations of the complete graph: from the k-pyramidal to the universal property
BONVICINI, Simona;G. Mazzuoccolo;RINALDI, Gloria
2009
Abstract
We consider 2-factorizations of complete graphs which possess an automorphism group fixing k\ge 0 vertices and acting sharply transitively on the others. We study the structures of such factorizations and consider the cases in which the group is either abelian or dihedral in somemore details. We prove that the class of 2-factorizations of complete graphs is universal. Namely each finite group is the full automorphism group of a 2-factorization of the class.File | Dimensione | Formato | |
---|---|---|---|
universal_preprint.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
6.87 MB
Formato
Adobe PDF
|
6.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
k_pyrUniversa_rivista2009.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
179.94 kB
Formato
Adobe PDF
|
179.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris