We consider 2-factorizations of complete graphs which possess an automorphism group fixing k\ge 0 vertices and acting sharply transitively on the others. We study the structures of such factorizations and consider the cases in which the group is either abelian or dihedral in somemore details. We prove that the class of 2-factorizations of complete graphs is universal. Namely each finite group is the full automorphism group of a 2-factorization of the class.

On 2-factorizations of the complete graph: from the k-pyramidal to the universal property / Bonvicini, Simona; G., Mazzuoccolo; Rinaldi, Gloria. - In: JOURNAL OF COMBINATORIAL DESIGNS. - ISSN 1063-8539. - STAMPA. - 17:3(2009), pp. 211-228. [10.1002/jcd.20205]

On 2-factorizations of the complete graph: from the k-pyramidal to the universal property

BONVICINI, Simona;G. Mazzuoccolo;RINALDI, Gloria
2009

Abstract

We consider 2-factorizations of complete graphs which possess an automorphism group fixing k\ge 0 vertices and acting sharply transitively on the others. We study the structures of such factorizations and consider the cases in which the group is either abelian or dihedral in somemore details. We prove that the class of 2-factorizations of complete graphs is universal. Namely each finite group is the full automorphism group of a 2-factorization of the class.
2009
17
3
211
228
On 2-factorizations of the complete graph: from the k-pyramidal to the universal property / Bonvicini, Simona; G., Mazzuoccolo; Rinaldi, Gloria. - In: JOURNAL OF COMBINATORIAL DESIGNS. - ISSN 1063-8539. - STAMPA. - 17:3(2009), pp. 211-228. [10.1002/jcd.20205]
Bonvicini, Simona; G., Mazzuoccolo; Rinaldi, Gloria
File in questo prodotto:
File Dimensione Formato  
universal_preprint.pdf

Accesso riservato

Descrizione: Articolo principale
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 6.87 MB
Formato Adobe PDF
6.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
k_pyrUniversa_rivista2009.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 179.94 kB
Formato Adobe PDF
179.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/615832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact