The paper deals with a quasi-linear ordinarydifferential equation when the nonlinearity is not necessarily monotone in its second argument. We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. In some special cases we are able to show the exact asymptotic growth of these solutions. We apply previous analysis for studying the non-oscillatory problem. Several examples are included.
Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations / Malaguti, Luisa; Taddei, Valentina. - In: ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS. FACULTAS RERUM NATURALIUM. MATHEMATICA. - ISSN 0231-9721. - STAMPA. - 44:(2005), pp. 97-113.
Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations
MALAGUTI, Luisa;TADDEI, Valentina
2005
Abstract
The paper deals with a quasi-linear ordinarydifferential equation when the nonlinearity is not necessarily monotone in its second argument. We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. In some special cases we are able to show the exact asymptotic growth of these solutions. We apply previous analysis for studying the non-oscillatory problem. Several examples are included.File | Dimensione | Formato | |
---|---|---|---|
Malaguti Taddei 2005.pdf
Accesso riservato
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
212.47 kB
Formato
Adobe PDF
|
212.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris