The paper deals with a quasi-linear ordinarydifferential equation when the nonlinearity is not necessarily monotone in its second argument. We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. In some special cases we are able to show the exact asymptotic growth of these solutions. We apply previous analysis for studying the non-oscillatory problem. Several examples are included.

Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations / Malaguti, Luisa; Taddei, Valentina. - In: ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS. FACULTAS RERUM NATURALIUM. MATHEMATICA. - ISSN 0231-9721. - STAMPA. - 44:(2005), pp. 97-113.

Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations

MALAGUTI, Luisa;TADDEI, Valentina
2005

Abstract

The paper deals with a quasi-linear ordinarydifferential equation when the nonlinearity is not necessarily monotone in its second argument. We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. In some special cases we are able to show the exact asymptotic growth of these solutions. We apply previous analysis for studying the non-oscillatory problem. Several examples are included.
2005
44
97
113
Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations / Malaguti, Luisa; Taddei, Valentina. - In: ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS. FACULTAS RERUM NATURALIUM. MATHEMATICA. - ISSN 0231-9721. - STAMPA. - 44:(2005), pp. 97-113.
Malaguti, Luisa; Taddei, Valentina
File in questo prodotto:
File Dimensione Formato  
Malaguti Taddei 2005.pdf

Accesso riservato

Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 212.47 kB
Formato Adobe PDF
212.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/613314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact