In this paper we propose K-Boost, a novel clustering algorithm basedon a combination of the Furthest-Point-First (FPF) heuristic for solving themetric k-center problem, a {\em stability-based} method for determining thenumber of clusters, and a k-means-like cluster refinement. Experiments showthat \textit{K-Boost} exhibits a good quality/running time tradeoff that makesit ideal for large data sets, with quality measured by several internal andexternal criteria.
K-Boost: a Scalable Algorithm for High-Quality Clustering of Microarray Gene Expression Data / Geraci, F; Leoncini, Mauro; Montangero, Manuela; Pellegrini, M; Renda, M. E.. - In: JOURNAL OF COMPUTATIONAL BIOLOGY. - ISSN 1066-5277. - STAMPA. - 16:6(2009), pp. 859-873. [10.1089/cmb.2008.0201]
K-Boost: a Scalable Algorithm for High-Quality Clustering of Microarray Gene Expression Data
LEONCINI, Mauro;MONTANGERO, Manuela;
2009
Abstract
In this paper we propose K-Boost, a novel clustering algorithm basedon a combination of the Furthest-Point-First (FPF) heuristic for solving themetric k-center problem, a {\em stability-based} method for determining thenumber of clusters, and a k-means-like cluster refinement. Experiments showthat \textit{K-Boost} exhibits a good quality/running time tradeoff that makesit ideal for large data sets, with quality measured by several internal andexternal criteria.File | Dimensione | Formato | |
---|---|---|---|
jcb09.pdf
Accesso riservato
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
276.64 kB
Formato
Adobe PDF
|
276.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris