We consider the time-dependent one-dimensional nonlinear Schro¨dinger equation with pointwise singular potential. Bymeans of spectral splitting methods we prove that the evolution operator is approximated by the Lie evolution operator,where the kernel of the Lie evolution operator is explicitly written. This result yields a numerical procedure which is muchless computationally expensive than multi-grid methods previously used. Furthermore, we apply the Lie approximation inorder to make some numerical experiments concerning the splitting of a soliton, interaction among solitons and blow-upphenomenon.

Spectral splitting method for nonlinear Schrodinger equations with singular potential / Sacchetti, Andrea. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - STAMPA. - 227:2(2007), pp. 1483-1499. [10.1016/j.jcp.2007.09.014]

Spectral splitting method for nonlinear Schrodinger equations with singular potential

SACCHETTI, Andrea
2007

Abstract

We consider the time-dependent one-dimensional nonlinear Schro¨dinger equation with pointwise singular potential. Bymeans of spectral splitting methods we prove that the evolution operator is approximated by the Lie evolution operator,where the kernel of the Lie evolution operator is explicitly written. This result yields a numerical procedure which is muchless computationally expensive than multi-grid methods previously used. Furthermore, we apply the Lie approximation inorder to make some numerical experiments concerning the splitting of a soliton, interaction among solitons and blow-upphenomenon.
2007
227
2
1483
1499
Spectral splitting method for nonlinear Schrodinger equations with singular potential / Sacchetti, Andrea. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - STAMPA. - 227:2(2007), pp. 1483-1499. [10.1016/j.jcp.2007.09.014]
Sacchetti, Andrea
File in questo prodotto:
File Dimensione Formato  
JCP_Sacchetti_2007_VQR.pdf

Accesso riservato

Tipologia: Altro
Dimensione 687.94 kB
Formato Adobe PDF
687.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/612613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact