For a class of random Schrodinger operators in L2(R(d)) H(omega) = -DELTA + SIGMA(j is-an-element-of Z(d)) q(j)(omega) f(x - j) where q(j) are continuous independent identically distributed bounded random variables and f has a power decay and defined sign, in any energy interval the singular continuous spectrum is either empty or with positive Lebesgue measure. As a consequence, the proof of localization for a class of random but deterministic one-dimensional operators is shifted to showing that the singular continuous spectrum has null Lebesgue measure.

Singular continuous spectrum in a class of random Schroedinger operators / M., Barbieri; Maioli, Marco; Sacchetti, Andrea. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - STAMPA. - 6:(1993), pp. 23-26.

Singular continuous spectrum in a class of random Schroedinger operators

MAIOLI, Marco;SACCHETTI, Andrea
1993

Abstract

For a class of random Schrodinger operators in L2(R(d)) H(omega) = -DELTA + SIGMA(j is-an-element-of Z(d)) q(j)(omega) f(x - j) where q(j) are continuous independent identically distributed bounded random variables and f has a power decay and defined sign, in any energy interval the singular continuous spectrum is either empty or with positive Lebesgue measure. As a consequence, the proof of localization for a class of random but deterministic one-dimensional operators is shifted to showing that the singular continuous spectrum has null Lebesgue measure.
1993
6
23
26
Singular continuous spectrum in a class of random Schroedinger operators / M., Barbieri; Maioli, Marco; Sacchetti, Andrea. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - STAMPA. - 6:(1993), pp. 23-26.
M., Barbieri; Maioli, Marco; Sacchetti, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/612564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact