In this paper, the deformation of a composite hard ferromagnetic-elastic beam-plate structure is investigated. A sandwich structure, composed of two thin hard ferromagnetic layers, with a linear elastic lay-er in between, is considered. The deformation is due to the self generated magnetic field (magnetostriction). The aim is to assess the interaction forces among the perfectly bonded layers, through a consistent application of the classical nonlinear magneto-elastic theory. Once the general mechanical model is stated, the analysis is specialized to study longitudinal elongation, given its great relevance in technical applications. Owing to the non-local character of the magnetic action, a nonlinear integro-differential equation is derived. Some qualitative properties of the solution are pointed out and the asymptotic behavior near the end sections is examined in detail. A finite differences approach allows writing an approximating nonlinear system of equations in the non asymptotic part of the solution, which is solved through a Newton's iterative scheme. The numerical results are discussed and it is shown how the asymptotic part of the solution well approximates the full behavior of the structure. Furthermore, the longitudinal interaction force density is found to be singular at the end cross-sections, regardless of the assumed bonding type.

A hard ferromagnetic and elastic beam-plate sandwich structure / Nobili, Andrea; Tarantino, Angelo Marcello. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - ELETTRONICO. - 58:1(2007), pp. 137-160. [10.1007/s00033-005-0043-4]

A hard ferromagnetic and elastic beam-plate sandwich structure

NOBILI, Andrea;TARANTINO, Angelo Marcello
2007

Abstract

In this paper, the deformation of a composite hard ferromagnetic-elastic beam-plate structure is investigated. A sandwich structure, composed of two thin hard ferromagnetic layers, with a linear elastic lay-er in between, is considered. The deformation is due to the self generated magnetic field (magnetostriction). The aim is to assess the interaction forces among the perfectly bonded layers, through a consistent application of the classical nonlinear magneto-elastic theory. Once the general mechanical model is stated, the analysis is specialized to study longitudinal elongation, given its great relevance in technical applications. Owing to the non-local character of the magnetic action, a nonlinear integro-differential equation is derived. Some qualitative properties of the solution are pointed out and the asymptotic behavior near the end sections is examined in detail. A finite differences approach allows writing an approximating nonlinear system of equations in the non asymptotic part of the solution, which is solved through a Newton's iterative scheme. The numerical results are discussed and it is shown how the asymptotic part of the solution well approximates the full behavior of the structure. Furthermore, the longitudinal interaction force density is found to be singular at the end cross-sections, regardless of the assumed bonding type.
2007
58
1
137
160
A hard ferromagnetic and elastic beam-plate sandwich structure / Nobili, Andrea; Tarantino, Angelo Marcello. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - ELETTRONICO. - 58:1(2007), pp. 137-160. [10.1007/s00033-005-0043-4]
Nobili, Andrea; Tarantino, Angelo Marcello
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/612504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact