Injection-locked LC dividers for low-power quadrature generation are discussed in this paper. Modeling the circuits as regenerative frequency dividers leads to very simple analytical expressions for the locking band, phase deviation from quadrature and phase noise. Maximizing the ratio between the injected and the biasing current is beneficial to all the above parameters whereas reducing the tank quality factor improves locking band and quadrature accuracy, though at the expense of current consumption, for given output amplitude. To validate the theory, experiments have been carried on a 0.18-mum CMOS direct conversion IC, embedding an injection-locked quadrature generator, realized for the Universal Mobile Telecommunication System. Frequency locking range as large as 24% and phase deviation from quadrature around 0.8degrees are measured while each divider consumes 2 mA. The phase noise of the quadrature generator is determined by the driving oscillator phase noise because the dividers contribution is easily made negligible up to hundreds of megahertz offset.
Analysis and Design of Injection-Locked LC Dividers for Quadrature Generation / Mazzanti, Andrea; P., Uggetti; F., Svelto. - In: IEEE JOURNAL OF SOLID-STATE CIRCUITS. - ISSN 0018-9200. - STAMPA. - 39:9(2004), pp. 1425-1433. [10.1109/JSSC.2004.831596]
Analysis and Design of Injection-Locked LC Dividers for Quadrature Generation
MAZZANTI, Andrea;
2004
Abstract
Injection-locked LC dividers for low-power quadrature generation are discussed in this paper. Modeling the circuits as regenerative frequency dividers leads to very simple analytical expressions for the locking band, phase deviation from quadrature and phase noise. Maximizing the ratio between the injected and the biasing current is beneficial to all the above parameters whereas reducing the tank quality factor improves locking band and quadrature accuracy, though at the expense of current consumption, for given output amplitude. To validate the theory, experiments have been carried on a 0.18-mum CMOS direct conversion IC, embedding an injection-locked quadrature generator, realized for the Universal Mobile Telecommunication System. Frequency locking range as large as 24% and phase deviation from quadrature around 0.8degrees are measured while each divider consumes 2 mA. The phase noise of the quadrature generator is determined by the driving oscillator phase noise because the dividers contribution is easily made negligible up to hundreds of megahertz offset.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris