We consider the energy levels of a Stark family, in the parameter j, of quartic double wells with perturbation parameter g: H(g, j) = p(2) + x(2)(1 - gx)(2) - j (gx - 1/2). For non-even j (and for the symmetric case j = 0) we prove analyticity in the full Nevanlinna disk Rg(-2) > R(-1) of the g(2)-plane, as predicted by Crutchfield. By means of an approximation we give a heuristic estimate of the asymptotic small g behaviour, showing the relation between the avoided crossings and the failure of the usual perturbation series.
Double wells: Nevanlinna analyticity, distributional borel sum and asymptotics / Caliceti, E; Grecchi, V; Maioli, Marco. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 176:(1996), pp. 1-22.
Double wells: Nevanlinna analyticity, distributional borel sum and asymptotics
MAIOLI, Marco
1996
Abstract
We consider the energy levels of a Stark family, in the parameter j, of quartic double wells with perturbation parameter g: H(g, j) = p(2) + x(2)(1 - gx)(2) - j (gx - 1/2). For non-even j (and for the symmetric case j = 0) we prove analyticity in the full Nevanlinna disk Rg(-2) > R(-1) of the g(2)-plane, as predicted by Crutchfield. By means of an approximation we give a heuristic estimate of the asymptotic small g behaviour, showing the relation between the avoided crossings and the failure of the usual perturbation series.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris