Spin transitions and correlated few-electron states are investigated by resonant inelastic light scattering in dilute arrays of GaAs/AlGaAs modulation-doped quantum dots (QDs) fabricated by electron-beam lithography and low impact reactive-ion etching. We focus on QDs with four electrons. We show that at moderate magnetic fields, the ground state is a singlet with total spin S = 0. A rich spectrum of distinct spin and charge inter-shell excitations is found, which cannot be described by a mean-field Hartree-Fock framework based on the quantum description of Fock-Darwin energy levels. Instead, the experimental results are well modeled by numerical evaluations within a full configuration interaction approach that highlights the impact of correlation effects in this configuration. This work demonstrates that the sensitivity reached by resonant inelastic light scattering enables the study of few-electron effects in QDs formed by state-of-the-art nanofabrication processes under the extreme conditions of low temperatures and high magnetic fields. (C) 2007 Elsevier B.V. All rights reserved.
Correlated states and spin transitions in nanofabricated AlGaAs/GaAs few-electron quantum dots probed by inelastic light scattering / S., Kalliacos; C. P., Garcia; V., Pellegrini; A., Pinczuk; B. S., Dennis; L. N., Pfeiffer; K. W., West; Rontani, Massimo; Goldoni, Guido; Molinari, Elisa. - In: PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES. - ISSN 1386-9477. - STAMPA. - 40:6(2008), pp. 1867-1869. [10.1016/j.physe.2007.08.114]
Correlated states and spin transitions in nanofabricated AlGaAs/GaAs few-electron quantum dots probed by inelastic light scattering
RONTANI, Massimo;GOLDONI, Guido;MOLINARI, Elisa
2008
Abstract
Spin transitions and correlated few-electron states are investigated by resonant inelastic light scattering in dilute arrays of GaAs/AlGaAs modulation-doped quantum dots (QDs) fabricated by electron-beam lithography and low impact reactive-ion etching. We focus on QDs with four electrons. We show that at moderate magnetic fields, the ground state is a singlet with total spin S = 0. A rich spectrum of distinct spin and charge inter-shell excitations is found, which cannot be described by a mean-field Hartree-Fock framework based on the quantum description of Fock-Darwin energy levels. Instead, the experimental results are well modeled by numerical evaluations within a full configuration interaction approach that highlights the impact of correlation effects in this configuration. This work demonstrates that the sensitivity reached by resonant inelastic light scattering enables the study of few-electron effects in QDs formed by state-of-the-art nanofabrication processes under the extreme conditions of low temperatures and high magnetic fields. (C) 2007 Elsevier B.V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
PhysE_40_1867_08.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
219.51 kB
Formato
Adobe PDF
|
219.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris