Electron spin resonance (ESR) analysis combined with the use of 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) and dibromonitroso benzenesulfonic acid (DBNBS) as spin-trapping agents was used to characterize free radical generation during the metabolism of the anticancer agent procarbazine [N-isopropyl-a-(2-methylhydrazino)-p-toluamide hydrochloride]. The formation of free radical species, identified as methyl radicals, was observed during oxidation of procarbazine in rat liver microsomes and isolated hepatocytes in vitro, as well as in several organs following administration of the drug in vivo. A cytochrome P450-mediated reaction, involving P450IA and IIB isoenzymes, was responsible for the activation process. The metabolic pathway leading to free radical formation was characterized using various procarbazine metabolites and revealed strict analogies with previously published data on methane production from procarbazine. These results supported the identification of the trapped species as methyl free radical and suggested that C-oxidation of azoprocarbazine is the main source of radical intermediates derived from this anticancer drug.

In vitro and in vivo evidence for the formation of methyl radical from procarbazine: a spin trapping study / GORIA GATTI, L; Iannone, Anna; Tomasi, Aldo; Poli, G; Albano, E.. - In: CARCINOGENESIS. - ISSN 0143-3334. - STAMPA. - 13:(1992), pp. 799-805.

In vitro and in vivo evidence for the formation of methyl radical from procarbazine: a spin trapping study

IANNONE, Anna;TOMASI, Aldo;
1992

Abstract

Electron spin resonance (ESR) analysis combined with the use of 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) and dibromonitroso benzenesulfonic acid (DBNBS) as spin-trapping agents was used to characterize free radical generation during the metabolism of the anticancer agent procarbazine [N-isopropyl-a-(2-methylhydrazino)-p-toluamide hydrochloride]. The formation of free radical species, identified as methyl radicals, was observed during oxidation of procarbazine in rat liver microsomes and isolated hepatocytes in vitro, as well as in several organs following administration of the drug in vivo. A cytochrome P450-mediated reaction, involving P450IA and IIB isoenzymes, was responsible for the activation process. The metabolic pathway leading to free radical formation was characterized using various procarbazine metabolites and revealed strict analogies with previously published data on methane production from procarbazine. These results supported the identification of the trapped species as methyl free radical and suggested that C-oxidation of azoprocarbazine is the main source of radical intermediates derived from this anticancer drug.
1992
13
799
805
In vitro and in vivo evidence for the formation of methyl radical from procarbazine: a spin trapping study / GORIA GATTI, L; Iannone, Anna; Tomasi, Aldo; Poli, G; Albano, E.. - In: CARCINOGENESIS. - ISSN 0143-3334. - STAMPA. - 13:(1992), pp. 799-805.
GORIA GATTI, L; Iannone, Anna; Tomasi, Aldo; Poli, G; Albano, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/611858
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 27
social impact