A partial charge shell-ion model potential for silica polymorphs and their hydroxylated surfaces(FFSiOH) was parametrized in a self-consistent way using periodic B3LYP results for bulk R-cristobaliteand the (100) and (001) hydroxylated surfaces. The reliability of the new potentials was checked bycomparing structures, vibrational frequencies and relative phase stabilities of dense bulk silica polymorphs,namely R-quartz, R-cristobalite, R-tridymite, and Stishovite with both experimental and B3LYP data.The FFSiOH was also checked for computing structural and vibrational features of representative all-silica microporous materials, namely edingtonite, chabazite, and faujasite. As a last step, FFSiOH wasadopted to predict OH stretching vibrational frequencies and relative thermodynamic stability of themost common fully hydroxylated surfaces of the dense silica polymorphs, the (100) and (001) facesof all-silica edingtonite, the features of the local Si-defect in chabazite and sodalite known as (SiOH)4hydrogarnet and the geometries of H-bonded silanol groups of an amorphous silica surface. In all casesexcellent agreement resulted between FFSiOH and B3LYP periodic data and experimental data, whenavailable. The new FFSiOH force field opens up the molecular simulation of materials in which thesurface hydroxyl groups play a key role, as is the case for amorphous silica surfaces, all-silica zeoliteexternal surfaces, and the internal walls of mesoporous materials.
FFSiOH: a New Force Field for Silica Polymorphs and Their Hydroxylated Surfaces Based on Periodic B3LYP Calculations / Pedone, Alfonso; Malavasi, Gianluca; Segre, Ulderico; Menziani, Maria Cristina; Musso, F; Corno, M; Civalleri, B; Ugliengo, P.. - In: CHEMISTRY OF MATERIALS. - ISSN 0897-4756. - ELETTRONICO. - 20:7(2008), pp. 2522-2531. [10.1021/cm703437y]
FFSiOH: a New Force Field for Silica Polymorphs and Their Hydroxylated Surfaces Based on Periodic B3LYP Calculations
PEDONE, Alfonso;MALAVASI, Gianluca;SEGRE, Ulderico;MENZIANI, Maria Cristina;
2008
Abstract
A partial charge shell-ion model potential for silica polymorphs and their hydroxylated surfaces(FFSiOH) was parametrized in a self-consistent way using periodic B3LYP results for bulk R-cristobaliteand the (100) and (001) hydroxylated surfaces. The reliability of the new potentials was checked bycomparing structures, vibrational frequencies and relative phase stabilities of dense bulk silica polymorphs,namely R-quartz, R-cristobalite, R-tridymite, and Stishovite with both experimental and B3LYP data.The FFSiOH was also checked for computing structural and vibrational features of representative all-silica microporous materials, namely edingtonite, chabazite, and faujasite. As a last step, FFSiOH wasadopted to predict OH stretching vibrational frequencies and relative thermodynamic stability of themost common fully hydroxylated surfaces of the dense silica polymorphs, the (100) and (001) facesof all-silica edingtonite, the features of the local Si-defect in chabazite and sodalite known as (SiOH)4hydrogarnet and the geometries of H-bonded silanol groups of an amorphous silica surface. In all casesexcellent agreement resulted between FFSiOH and B3LYP periodic data and experimental data, whenavailable. The new FFSiOH force field opens up the molecular simulation of materials in which thesurface hydroxyl groups play a key role, as is the case for amorphous silica surfaces, all-silica zeoliteexternal surfaces, and the internal walls of mesoporous materials.File | Dimensione | Formato | |
---|---|---|---|
Malavasi3.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris