Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.
Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells / Gemelli, Claudia; Montanari, Monica; Tenedini, Elena; ZANOCCO MARANI, Tommaso; Vignudelli, Tatiana; Siena, Michela; Zini, Roberta; Salati, Simona; Tagliafico, Enrico; Manfredini, Rossella; Specchia, G; Grande, Alexis; Ferrari, Sergio. - In: CELL DEATH AND DIFFERENTIATION. - ISSN 1350-9047. - STAMPA. - 13:10(2006), pp. 1686-1696. [10.1038/sj.cdd.4401860]
Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells
GEMELLI, Claudia;MONTANARI, Monica;TENEDINI, Elena;ZANOCCO MARANI, Tommaso;VIGNUDELLI, Tatiana;SIENA, Michela;ZINI, Roberta;SALATI, Simona;TAGLIAFICO, Enrico;MANFREDINI, Rossella;Specchia G;GRANDE, Alexis;FERRARI, Sergio
2006
Abstract
Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.File | Dimensione | Formato | |
---|---|---|---|
31. gemelli_CDD_2006.pdf
Solo gestori archivio
Tipologia:
Versione pubblicata dall'editore
Dimensione
417.86 kB
Formato
Adobe PDF
|
417.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris