Macrophages are important antimicrobial effectors, whose efficacy is greatly enhanced by interferon-gamma (IFNgamma). We recently engineered a mouse macrophage cell line to express the IFNgamma gene in a inducible manner. Such macrophages, Mphi10, include a construct containing the IFNgamma gene under the control of the synthetic promoter HRE3x-Tk. Picolinic acid (PA) is a catabolite of tryptophan, known to exert costimulatory activities on macrophages and expected to act on transcriptional elements within HRE3x-Tk promoter. Since evidence exists on the efficacy of engineered macrophages as carriers of therapeutic genes against tumors, we tested Mphi10, under basal conditions and following exposure to PA, as IFNgamma-producing cells in in vitro models of fungal infection. We found that Mphi10 constitutively exhibited anticryptococcal and anticandidal activity, low but detectable levels of IFNgamma mRNA and undetectable levels of nitric oxide synthase (iNOS) transcripts. Treatment with PA caused time-dependent enhancement of antifungal activity. The phenomenon was associated with the induction of both IFNgamma and iNOS gene expression and was followed by IFNgamma and NO production. The effect of the Mphi10-produced IFNgamma on other cells was also investigated by a transwell co-culture system. A major enhancement of phagocytosis and antifungal activity was observed in BV2 microglial cells that had been co-cultured with Mphi10. Such an increase was only evident when Mphi10 had been pretreated with PA and was abrogated by concomitant addition of anti-IFNgamma antibodies. In conclusion, we show that Mphi10 respond to PA with the production of IFNgamma, which retains the ability to induce antifungal activity in the producing macrophages as well as in other macrophage populations. The potential use of Mphi10 as vectors for therapeutic genes in infectious diseases is discussed

Antifungal activity of macrophages engineered to produce IFNgamma: inducibility by picolinic acid / Mucci, A; Varesio, L; Neglia, Rachele Giovanna; Colombari, B; Pastorino, S; Blasi, Elisabetta. - In: MEDICAL MICROBIOLOGY AND IMMUNOLOGY. - ISSN 0300-8584. - ELETTRONICO. - 192:(2003), pp. 71-78.

Antifungal activity of macrophages engineered to produce IFNgamma: inducibility by picolinic acid

NEGLIA, Rachele Giovanna;BLASI, Elisabetta
2003

Abstract

Macrophages are important antimicrobial effectors, whose efficacy is greatly enhanced by interferon-gamma (IFNgamma). We recently engineered a mouse macrophage cell line to express the IFNgamma gene in a inducible manner. Such macrophages, Mphi10, include a construct containing the IFNgamma gene under the control of the synthetic promoter HRE3x-Tk. Picolinic acid (PA) is a catabolite of tryptophan, known to exert costimulatory activities on macrophages and expected to act on transcriptional elements within HRE3x-Tk promoter. Since evidence exists on the efficacy of engineered macrophages as carriers of therapeutic genes against tumors, we tested Mphi10, under basal conditions and following exposure to PA, as IFNgamma-producing cells in in vitro models of fungal infection. We found that Mphi10 constitutively exhibited anticryptococcal and anticandidal activity, low but detectable levels of IFNgamma mRNA and undetectable levels of nitric oxide synthase (iNOS) transcripts. Treatment with PA caused time-dependent enhancement of antifungal activity. The phenomenon was associated with the induction of both IFNgamma and iNOS gene expression and was followed by IFNgamma and NO production. The effect of the Mphi10-produced IFNgamma on other cells was also investigated by a transwell co-culture system. A major enhancement of phagocytosis and antifungal activity was observed in BV2 microglial cells that had been co-cultured with Mphi10. Such an increase was only evident when Mphi10 had been pretreated with PA and was abrogated by concomitant addition of anti-IFNgamma antibodies. In conclusion, we show that Mphi10 respond to PA with the production of IFNgamma, which retains the ability to induce antifungal activity in the producing macrophages as well as in other macrophage populations. The potential use of Mphi10 as vectors for therapeutic genes in infectious diseases is discussed
192
71
78
Antifungal activity of macrophages engineered to produce IFNgamma: inducibility by picolinic acid / Mucci, A; Varesio, L; Neglia, Rachele Giovanna; Colombari, B; Pastorino, S; Blasi, Elisabetta. - In: MEDICAL MICROBIOLOGY AND IMMUNOLOGY. - ISSN 0300-8584. - ELETTRONICO. - 192:(2003), pp. 71-78.
Mucci, A; Varesio, L; Neglia, Rachele Giovanna; Colombari, B; Pastorino, S; Blasi, Elisabetta
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/610839
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact