Let F be a one–factorization of K_2m and let H be an automorphism group of F acting sharply transitively on the vertices of K_2m. Let G be a group having H as a subgroup of index 2. We give a sufficient condition for the existence of a one–factorization of K_4m which doubles the original one-factorization F and admits G as an automorphism group acting sharply transitively on vertices.

Starters: Doubling Constructions / Bonvicini, Simona. - In: BULLETIN OF THE INSTITUTE OF COMBINATORICS AND ITS APPLICATIONS. - ISSN 1183-1278. - STAMPA. - 46:(2006), pp. 88-98.

Starters: Doubling Constructions

BONVICINI, Simona
2006

Abstract

Let F be a one–factorization of K_2m and let H be an automorphism group of F acting sharply transitively on the vertices of K_2m. Let G be a group having H as a subgroup of index 2. We give a sufficient condition for the existence of a one–factorization of K_4m which doubles the original one-factorization F and admits G as an automorphism group acting sharply transitively on vertices.
2006
46
88
98
Starters: Doubling Constructions / Bonvicini, Simona. - In: BULLETIN OF THE INSTITUTE OF COMBINATORICS AND ITS APPLICATIONS. - ISSN 1183-1278. - STAMPA. - 46:(2006), pp. 88-98.
Bonvicini, Simona
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/609926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact