Solutions in a given set of the Floquet boundary value problem are investigated for second-order Marchaud systems. The methods used involve a fixed point index techniquedeveloped by ourselves earlier with a bound sets approach. Since the related bounding (Liapunov-like) functions are strictly localized on the boundaries of parameter sets of candidate solutions, some trajectories are allowed to escape from these sets. The main existence and localization theorem is illustrated by two examples for periodic and antiperiodic problems.

On the Floquet problem for second-order Marchaud differential systems / J., Andres; M., Kozusníková; Malaguti, Luisa. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 351:1(2009), pp. 360-372. [10.1016/j.jmaa.2008.10.028]

On the Floquet problem for second-order Marchaud differential systems

MALAGUTI, Luisa
2009

Abstract

Solutions in a given set of the Floquet boundary value problem are investigated for second-order Marchaud systems. The methods used involve a fixed point index techniquedeveloped by ourselves earlier with a bound sets approach. Since the related bounding (Liapunov-like) functions are strictly localized on the boundaries of parameter sets of candidate solutions, some trajectories are allowed to escape from these sets. The main existence and localization theorem is illustrated by two examples for periodic and antiperiodic problems.
2009
351
1
360
372
On the Floquet problem for second-order Marchaud differential systems / J., Andres; M., Kozusníková; Malaguti, Luisa. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 351:1(2009), pp. 360-372. [10.1016/j.jmaa.2008.10.028]
J., Andres; M., Kozusníková; Malaguti, Luisa
File in questo prodotto:
File Dimensione Formato  
Andres Kozusnikova Malaguti 2009.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 244.08 kB
Formato Adobe PDF
244.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/609681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact