Several methods based on different image models have been proposed and developed for image denoising. Some of them, such as total variation (TV) and wavelet thresholding, are based on the assumption of additive Gaussian noise. Recently the TV approach has been extended to the case of Poisson noise, a model describing the effect of photon counting in applications such as emission tomography, microscopy and astronomy. For the removal of this kind of noise we consider an approach based on a constrained optimization problem, with an objective function describing TV and other edge-preserving regularizations of the Kullback–Leibler divergence. We introduce a new discrepancy principle for the choice of the regularization parameter, which is justified by the statistical properties of the Poisson noise. For solving the optimization problem we propose a particular form of a general scaled gradient projection (SGP) method, recently introduced for image deblurring. We derive the form of the scaling from a decomposition of the gradient of the regularization functional into a positive and a negative part. The beneficial effect of the scaling is proved by means of numerical simulations, showing that the performance of the proposed form of SGP is superior to that of the most efficient gradient projection methods. An extended numerical analysis of the dependence of the solution on the regularization parameter is also performed to test the effectiveness of the proposed discrepancy principle.

Efficient gradient projection methods for edge-preserving removal of Poisson noise / Zanella, Riccardo; Boccacci, P; Zanni, Luca; Bertero, M.. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 25:4(2009), pp. 045010-045010. [10.1088/0266-5611/25/4/045010]

Efficient gradient projection methods for edge-preserving removal of Poisson noise

ZANELLA, RICCARDO;ZANNI, Luca;
2009

Abstract

Several methods based on different image models have been proposed and developed for image denoising. Some of them, such as total variation (TV) and wavelet thresholding, are based on the assumption of additive Gaussian noise. Recently the TV approach has been extended to the case of Poisson noise, a model describing the effect of photon counting in applications such as emission tomography, microscopy and astronomy. For the removal of this kind of noise we consider an approach based on a constrained optimization problem, with an objective function describing TV and other edge-preserving regularizations of the Kullback–Leibler divergence. We introduce a new discrepancy principle for the choice of the regularization parameter, which is justified by the statistical properties of the Poisson noise. For solving the optimization problem we propose a particular form of a general scaled gradient projection (SGP) method, recently introduced for image deblurring. We derive the form of the scaling from a decomposition of the gradient of the regularization functional into a positive and a negative part. The beneficial effect of the scaling is proved by means of numerical simulations, showing that the performance of the proposed form of SGP is superior to that of the most efficient gradient projection methods. An extended numerical analysis of the dependence of the solution on the regularization parameter is also performed to test the effectiveness of the proposed discrepancy principle.
2009
25
4
045010
045010
Efficient gradient projection methods for edge-preserving removal of Poisson noise / Zanella, Riccardo; Boccacci, P; Zanni, Luca; Bertero, M.. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 25:4(2009), pp. 045010-045010. [10.1088/0266-5611/25/4/045010]
Zanella, Riccardo; Boccacci, P; Zanni, Luca; Bertero, M.
File in questo prodotto:
File Dimensione Formato  
ZBZB_denoising.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 821.71 kB
Formato Adobe PDF
821.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/609565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 134
  • ???jsp.display-item.citation.isi??? 110
social impact