The paper focuses on the development of a framework for high-order compact finite volume discretization of the three dimensional scalar advection–diffusion equation. In order to deal with irregular domains, a coordinate transformation is applied between a curvilinear, non-orthogonal grid in the physical space and the computational space. Advective fluxes are computed by the fifth-order upwind scheme introduced by Pirozzoli [S. Pirozzoli, Conservative hybrid compact-WENO schemes for shock turbulence interaction, J. Comp. Phys. 178 (2002) 81] while the Coupled Derivative scheme [M.H. Kobayashi, On a class of Pade´ finite volume methods, J. Comp. Phys. 156 (1999) 137] is used for the discretization of the diffusive fluxes. Numerical tests include unsteady diffusion over a distorted grid, linear free-surface gravity waves in a irregular domain and the advection of a scalar field. The proposed methodology attains high-order formal accuracy and shows very favorable resolution characteristics for the simulation of problems with a wide range of length scales.
Compact finite volume schemes on boundary-fitted grids / M., Piller; Stalio, Enrico. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - STAMPA. - 227(2008), pp. 4736-4762.
Data di pubblicazione: | 2008 |
Titolo: | Compact finite volume schemes on boundary-fitted grids |
Autore/i: | M., Piller; Stalio, Enrico |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jcp.2008.01.022 |
Rivista: | |
Volume: | 227 |
Pagina iniziale: | 4736 |
Pagina finale: | 4762 |
Codice identificativo ISI: | WOS:000255423600023 |
Codice identificativo Scopus: | 2-s2.0-40849119481 |
Citazione: | Compact finite volume schemes on boundary-fitted grids / M., Piller; Stalio, Enrico. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - STAMPA. - 227(2008), pp. 4736-4762. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
piller_stalio_jcp08.pdf | Post-print dell'autore (bozza post referaggio) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris