The ability of the modern graphics processors to operate on large matrices in parallel can be exploited for solving constrained image deblurring problems in a short time. In particular, in this paper we propose the parallel implementation of two iterative regularization methods: the well known expectation maximization algorithm and a recent scaled gradient projection method. The main differences between the considered approaches and their impact on the parallel implementations are discussed. The effectiveness of the parallel schemes and the speedups over standard CPU implementations are evaluated on test problems arising from astronomical images.
Iterative regularization algorithms for constrained image deblurring on graphics processors / Ruggiero, V; Serafini, Thomas; Zanella, Riccardo; Zanni, Luca. - In: JOURNAL OF GLOBAL OPTIMIZATION. - ISSN 0925-5001. - STAMPA. - 48(2010), pp. 145-157.
Data di pubblicazione: | 2010 |
Titolo: | Iterative regularization algorithms for constrained image deblurring on graphics processors |
Autore/i: | Ruggiero, V; Serafini, Thomas; Zanella, Riccardo; Zanni, Luca |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10898-009-9516-x |
Rivista: | |
Volume: | 48 |
Pagina iniziale: | 145 |
Pagina finale: | 157 |
Codice identificativo ISI: | WOS:000280701000012 |
Codice identificativo Scopus: | 2-s2.0-77955515937 |
Citazione: | Iterative regularization algorithms for constrained image deblurring on graphics processors / Ruggiero, V; Serafini, Thomas; Zanella, Riccardo; Zanni, Luca. - In: JOURNAL OF GLOBAL OPTIMIZATION. - ISSN 0925-5001. - STAMPA. - 48(2010), pp. 145-157. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris