Extracted and purified benzodiazepine like compounds from dried flwer heads of Matricaria chamomilla was investigated through radioligand binding assay on rat cerebellar membrane. Moreover intracerbroventrivular injection of purified active fraction produced a significant decrease of locomotor activity in rats.
The presence of benzodiazepine-like substances in dried flower heads of Matricaria chamomilla was investigated. After extraction and HPLC purification we tested several fractions for their ability to displace in vitro [3H]Flunitrazepam bound to its receptors in rat cerebellar membranes, [3H]Muscimol linked to GABA receptors in rat cortical membrane preparations and [3H]RO 5-4864 specifically bound to the so-called 'peripheral' benzodiazepine binding sites present in membrane preparations from rat adrenal glands. Few of these fractions displaced both central and peripheral benzodiazepine binding sites and GABA receptors, too. As regards this last activity, by further HPLC analysis we identified GABA as the main agent responsible for the displacing effect. Some of the extracted fractions, not containing GABA, were intracerebronventricularly injected in rats and produced a statistically significant reduction of the locomotor activity. Ongoing experiment by mass spectrometric technique will help in the identification of the benzodiazepine-like compounds present in the extract of Matricaria chamomilla responsible for its sedative effect.
Benzodiazepine-like compounds and GABA in flower heads of Matricaria Chamomilla / Avallone, Rossella; Zanoli, Paola; Corsi, Lorenzo; Cannazza, Giuseppe; Baraldi, Mario. - In: PHYTOTHERAPY RESEARCH. - ISSN 0951-418X. - STAMPA. - 10:1(1996), pp. 177-179.
Benzodiazepine-like compounds and GABA in flower heads of Matricaria Chamomilla
AVALLONE, Rossella;ZANOLI, Paola;CORSI, Lorenzo;CANNAZZA, Giuseppe;BARALDI, Mario
1996
Abstract
The presence of benzodiazepine-like substances in dried flower heads of Matricaria chamomilla was investigated. After extraction and HPLC purification we tested several fractions for their ability to displace in vitro [3H]Flunitrazepam bound to its receptors in rat cerebellar membranes, [3H]Muscimol linked to GABA receptors in rat cortical membrane preparations and [3H]RO 5-4864 specifically bound to the so-called 'peripheral' benzodiazepine binding sites present in membrane preparations from rat adrenal glands. Few of these fractions displaced both central and peripheral benzodiazepine binding sites and GABA receptors, too. As regards this last activity, by further HPLC analysis we identified GABA as the main agent responsible for the displacing effect. Some of the extracted fractions, not containing GABA, were intracerebronventricularly injected in rats and produced a statistically significant reduction of the locomotor activity. Ongoing experiment by mass spectrometric technique will help in the identification of the benzodiazepine-like compounds present in the extract of Matricaria chamomilla responsible for its sedative effect.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris