Seasonal changes in adaptations associated with winter coping strategies have been frequently studied. Central among the suite of energy-saving, winter-coping strategies is the suspension of reproductive activities. The inhibition of reproduction by nontropical rodents is mediated by daylength changes. Although balanced annual energy budgets are critical, survival and subsequent reproductive success also require avoiding predators, illness, and early death. Because the stressors of winter could lead to suppressed immune function, we hypothesized that animals should have evolved survival strategies involving immunoenhancement. Short daylengths provide a predictive cue to individuals that could be used to enhance immune function in advance of stress-induced immunosuppression. In Experiment 1, adult female deer mice (Peromyscus maniculatus) were housed in either long (LD 16:8) or short (LD 8:16) days for 8 weeks, then injected with the chemical carcinogen 9,10-dimethyl-1,2-benzanthracene (DMBA) dissolved in dimethyl sulfoxide (DMSO) or with the DMSO vehicle alone. Animals were evaluated weekly for 8 weeks after injection. None of the animals treated with DMSO developed tumors in any of the experiments. Nearly 90% of the long-day deer mice injected with DMBA developed squamous cell carcinoma. None of the short-day deer mice injected with DMBA developed tumors. Small lesions developed at the site of injection; short-day females had less severe lesions and healed faster than long-day females. Immunoglobulin G (IgG) response to i.p. injection of sheep red blood cells (SRBC) did not differ photoperiodic conditions. The role of estrogens in the photoperiodic responses was evaluated in Experiment 2: Ovariectomized or sham-ovariectomized deer mice received estradiol benzoate replacement therapy or a control procedure in long daylengths for 8 weeks prior to injection of DMBA or DMSO, then were monitored for 8 additional weeks. Females treated with DMBA developed tumors at the same rate, regardless of estrogen manipulation. Estrogen did not affect healing rates. In Experiment 3, female deer mice were injected with a slurry of microspheres that either contained bromocriptine or were empty. Suppression of prolactin with bromocriptine resulted in a decrease of tumor incidence from 55.6% to 24% in long-day females 8 weeks after injection with DMBA. Healing rates were not affected by prolactin manipulations. Silastic capsules that were filled with either melatonin or cholesterol were implanted into long-day female deer mice in Experiment 4; 8 weeks later, females received an injection of either DMBA or DMSO, then were monitored for 8 weeks.(

Photoperiodic effects on tumor development and immune function / Nelson, Rj; Blom, Johanna Maria Catharina. - In: JOURNAL OF BIOLOGICAL RHYTHMS. - ISSN 0748-7304. - STAMPA. - 9:(1994), pp. 233-249. [10.1177/074873049400900305]

Photoperiodic effects on tumor development and immune function.

BLOM, Johanna Maria Catharina
1994

Abstract

Seasonal changes in adaptations associated with winter coping strategies have been frequently studied. Central among the suite of energy-saving, winter-coping strategies is the suspension of reproductive activities. The inhibition of reproduction by nontropical rodents is mediated by daylength changes. Although balanced annual energy budgets are critical, survival and subsequent reproductive success also require avoiding predators, illness, and early death. Because the stressors of winter could lead to suppressed immune function, we hypothesized that animals should have evolved survival strategies involving immunoenhancement. Short daylengths provide a predictive cue to individuals that could be used to enhance immune function in advance of stress-induced immunosuppression. In Experiment 1, adult female deer mice (Peromyscus maniculatus) were housed in either long (LD 16:8) or short (LD 8:16) days for 8 weeks, then injected with the chemical carcinogen 9,10-dimethyl-1,2-benzanthracene (DMBA) dissolved in dimethyl sulfoxide (DMSO) or with the DMSO vehicle alone. Animals were evaluated weekly for 8 weeks after injection. None of the animals treated with DMSO developed tumors in any of the experiments. Nearly 90% of the long-day deer mice injected with DMBA developed squamous cell carcinoma. None of the short-day deer mice injected with DMBA developed tumors. Small lesions developed at the site of injection; short-day females had less severe lesions and healed faster than long-day females. Immunoglobulin G (IgG) response to i.p. injection of sheep red blood cells (SRBC) did not differ photoperiodic conditions. The role of estrogens in the photoperiodic responses was evaluated in Experiment 2: Ovariectomized or sham-ovariectomized deer mice received estradiol benzoate replacement therapy or a control procedure in long daylengths for 8 weeks prior to injection of DMBA or DMSO, then were monitored for 8 additional weeks. Females treated with DMBA developed tumors at the same rate, regardless of estrogen manipulation. Estrogen did not affect healing rates. In Experiment 3, female deer mice were injected with a slurry of microspheres that either contained bromocriptine or were empty. Suppression of prolactin with bromocriptine resulted in a decrease of tumor incidence from 55.6% to 24% in long-day females 8 weeks after injection with DMBA. Healing rates were not affected by prolactin manipulations. Silastic capsules that were filled with either melatonin or cholesterol were implanted into long-day female deer mice in Experiment 4; 8 weeks later, females received an injection of either DMBA or DMSO, then were monitored for 8 weeks.(
1994
9
233
249
Photoperiodic effects on tumor development and immune function / Nelson, Rj; Blom, Johanna Maria Catharina. - In: JOURNAL OF BIOLOGICAL RHYTHMS. - ISSN 0748-7304. - STAMPA. - 9:(1994), pp. 233-249. [10.1177/074873049400900305]
Nelson, Rj; Blom, Johanna Maria Catharina
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/607939
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
social impact