BACKGROUND: Deletions of the AZF (azoospermia factor) subregions on the Y chromosome are accompanied by a diverse spectrum of spermatogenic disturbances ranging from hypospermatogenesis to total depletion of germ cells causing infertility. The AZF region encodes gene products which are candidates for the genetic control of spermatogenesis. Although it is known which genes are involved, a general principle of cause and effect cannot yet be deciphered and the deletion type has non-uniform histological phenotypes. METHODS AND RESULTS: We analysed morphological parameters of testicular biopsies from 17 patients diagnosed for Y chromosome microdeletions. As control groups we analysed testes from patients with idiopathic Sertoli cell-only (SCO) syndrome (n = 11), mixed atrophy (n = 10) and complete spermatogenesis (n = 11). A detailed genetic analysis on the extension of the observed microdeletions revealed similar breakpoints in the distal and proximal region of the AZFc region, indicating a common mechanism of homologous recombination for such deletions, as has been suggested before. Morphometric parameters such as the diameter of the tubules, lumen, thickness of the lamina propria and height of the tubule epithelia were investigated. The diameter of the tubules from patients with microdeletions was found to be significantly smaller compared with patients with mixed atrophy. Considering also the size of the tubules, lumen and epithelia, a Y-chromosomal microdeletion represents an intermediate state between an idiopathic SCO and normal spermatogenesis. The immunohistochemical analysis of six different Sertoli cell markers, cytokeratin 18, vimentin, inhibin {alpha} subunit, 14-3-3 {theta}, FSH receptor and androgen receptor, revealed no impact of AZF deletion on the specific expression pattern of these genes. CONCLUSIONS: Our results suggest that, notwithstanding the deletion of a common region in the AZFc region, microdeletions of the Y chromosome lead to an intermediate status between idiopathic SCO and complete spermatogenesis, resulting in a heterogeneous histological profile regardless of the seminiferous activity. The Sertoli cell function seems not to be altered.
Manifestation of Y-chromosomal deletions in the human testis: A morphometrical and immunohistochemical evaluation / Luetjens, Cm; Gromoll, J; Engelhardt, M; VON ECKARDSTEIN, S; Bergmann, M; Nieschlag, E; Simoni, Manuela. - In: HUMAN REPRODUCTION. - ISSN 0268-1161. - ELETTRONICO. - 17:9(2002), pp. 2258-2266. [10.1093/humrep/17.9.2258]
Manifestation of Y-chromosomal deletions in the human testis: A morphometrical and immunohistochemical evaluation
SIMONI, Manuela
2002
Abstract
BACKGROUND: Deletions of the AZF (azoospermia factor) subregions on the Y chromosome are accompanied by a diverse spectrum of spermatogenic disturbances ranging from hypospermatogenesis to total depletion of germ cells causing infertility. The AZF region encodes gene products which are candidates for the genetic control of spermatogenesis. Although it is known which genes are involved, a general principle of cause and effect cannot yet be deciphered and the deletion type has non-uniform histological phenotypes. METHODS AND RESULTS: We analysed morphological parameters of testicular biopsies from 17 patients diagnosed for Y chromosome microdeletions. As control groups we analysed testes from patients with idiopathic Sertoli cell-only (SCO) syndrome (n = 11), mixed atrophy (n = 10) and complete spermatogenesis (n = 11). A detailed genetic analysis on the extension of the observed microdeletions revealed similar breakpoints in the distal and proximal region of the AZFc region, indicating a common mechanism of homologous recombination for such deletions, as has been suggested before. Morphometric parameters such as the diameter of the tubules, lumen, thickness of the lamina propria and height of the tubule epithelia were investigated. The diameter of the tubules from patients with microdeletions was found to be significantly smaller compared with patients with mixed atrophy. Considering also the size of the tubules, lumen and epithelia, a Y-chromosomal microdeletion represents an intermediate state between an idiopathic SCO and normal spermatogenesis. The immunohistochemical analysis of six different Sertoli cell markers, cytokeratin 18, vimentin, inhibin {alpha} subunit, 14-3-3 {theta}, FSH receptor and androgen receptor, revealed no impact of AZF deletion on the specific expression pattern of these genes. CONCLUSIONS: Our results suggest that, notwithstanding the deletion of a common region in the AZFc region, microdeletions of the Y chromosome lead to an intermediate status between idiopathic SCO and complete spermatogenesis, resulting in a heterogeneous histological profile regardless of the seminiferous activity. The Sertoli cell function seems not to be altered.File | Dimensione | Formato | |
---|---|---|---|
172258.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris