The paper deals with boundary value problemsassociated to first-order differential inclusions in Banach spaces. The solvability is investigated in the (strong) Carathèodory sense on compact intervals. To this aim, we develop a general method that relies on degree arguments. This method is still combined with a bound sets technique for checking the behavior of trajectories in the neighborhood of a suitable parametric set of candidate solutions. On this basis, we obtain effective criteria for the existence of solutions of Floquet problems. The existence of entirely bounded solutions is also established by means of a sequence of solutions on compact increasing intervals.

On boundary value problems in Banach spaces / J., Andres; Malaguti, Luisa; Taddei, Valentina. - In: DYNAMIC SYSTEMS AND APPLICATIONS. - ISSN 1056-2176. - STAMPA. - 18:2(2009), pp. 275-302.

On boundary value problems in Banach spaces

MALAGUTI, Luisa;TADDEI, Valentina
2009

Abstract

The paper deals with boundary value problemsassociated to first-order differential inclusions in Banach spaces. The solvability is investigated in the (strong) Carathèodory sense on compact intervals. To this aim, we develop a general method that relies on degree arguments. This method is still combined with a bound sets technique for checking the behavior of trajectories in the neighborhood of a suitable parametric set of candidate solutions. On this basis, we obtain effective criteria for the existence of solutions of Floquet problems. The existence of entirely bounded solutions is also established by means of a sequence of solutions on compact increasing intervals.
2009
18
2
275
302
On boundary value problems in Banach spaces / J., Andres; Malaguti, Luisa; Taddei, Valentina. - In: DYNAMIC SYSTEMS AND APPLICATIONS. - ISSN 1056-2176. - STAMPA. - 18:2(2009), pp. 275-302.
J., Andres; Malaguti, Luisa; Taddei, Valentina
File in questo prodotto:
File Dimensione Formato  
Andres Malaguti Taddei 2009.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 276.56 kB
Formato Adobe PDF
276.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/607619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact